船联网上基于区块链的航行事件信息过滤方法
CSTR:
作者:
作者单位:

1.武汉理工大学智能交通系统研究中心,武汉理工大学水路交通控制全国重点实验室;2.长江水上交通监测与应急处置中心;3.武汉理工大学水路交通控制全国重点实验室,武汉理工大学交通与物流工程学院

作者简介:

通讯作者:

中图分类号:

U698

基金项目:

湖北省自然科学基金资助项目(2021CFB324),国家自然科学基金项目(52372320)(面上项目,重点项目,重大项目),国家自然科学基金项目(52272422)(面上项目,重点项目,重大项目)


Blockchain-based Information filtering Method for Navigational Events within Internet of Ships
Author:
Affiliation:

1.Intelligent Transportation Systems Research Center,Wuhan University of Technology;2.State Key Laboratory of Maritime Technology and Safety,Wuhan University of Technology;3.Yangtze River Waterway Transportation Monitoring and Emergency Center, Wuhan;4.School of Transportation and Logistics Engineering,Wuhan University of Technology

Fund Project:

Hubei Natural Science Foundation (grant number 2021CFB324),The National Natural Science Foundation of China (grant number 52372320)(General Program, Key Program, Major Research Plan),The National Natural Science Foundation of China (grant number 52272422)(General Program

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    船联网(IoS)为船舶信息广播提供了一个交互平台, 借助IoS进行航行事件通告, 能够有效提升船舶对通航环境的感知能力. 然而, 在纷繁的事件信息流中, 鉴别特定事件信息真实性成为亟需解决的关键问题. 基于区块链的无中心、分布式等计算特点, 在IoS上构建一种可信的信息交换方法, 并提出了适用于IoS的航行事件真实性判定与信任管理方案. 该方案通过信息过滤, 计算船舶间的综合相似度, 并借助贝叶斯推理模型验证事件的真实性. 同时, 引入信誉更新机制, 以识别恶意船舶. 进一步设计了基于船舶信誉值的DPoS共识机制, 旨在优先选择信誉值较高的船舶作为见证者船舶, 以保障系统出块环境的稳定性和高效性. 结果显示, 在船舶滥用行为占比为40%的情况下, 航行事件真实性判定的准确率仍在75%以上. 研究表明, 所提出的方案不仅有效提高航行事件真实性判定的准确率, 还能识别恶意船舶并限制其滥用行为, 从而保证IoS环境的安全和稳定.

    Abstract:

    The Internet of Ships (IoS) serves as an interactive platform for the dissemination of navigation-related information events. Such notifications enhances the situational awareness for the ships in the navigational environment. However, amidst the complex flow of event information, verifying the authenticity of specific events has emerged as a critical challenge that requires immediate resolution. This study addresses this issue by leveraging the decentralized and distributed computing capabilities of blockchain to establish a reliable information exchange protocols on IoS. A comprehensive framework is proposed to determine the authenticity of navigational events and manage trust in the IoS context. This framework adopts information filtering to compute the overall similarity between ships, and applies a Bayesian inference model to verify the authenticity of events. At the same time, a reputation update mechanism is introduced to detect and label malicious ships. In addition, a delegated proof of stake (DPoS) consensus mechanism is developed that depends on the reputation values of ships. This mechanism prioritizes the selection of ships with higher reputation values as witness ships to maintain the stability and efficiency of the system"s blocking environment. Empirical results demonstrate the effectiveness of the proposed scheme, showing that under conditions of 40% ship misuse, the accuracy of authenticating navigational events remains above 75%. The study confirms that the proposed scheme not only improves the accuracy of authenticity determination, but also skillfully identifies and restricts the activities of malicious vessels. This helps to strengthen the security and stability of the IoS environment.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-15
  • 最后修改日期:2024-08-27
  • 录用日期:2024-06-02
  • 在线发布日期: 2024-07-04
  • 出版日期:
文章二维码