基于有限状态机的六足机器人人机协同指令优选方法
CSTR:
作者:
作者单位:

1.哈尔滨理工大学;2.哈尔滨工业大学

作者简介:

通讯作者:

中图分类号:

TP242

基金项目:

国家自然科学基金重点项目(91948202),黑龙江省自然科学基金联合引导项目 (LH2020E088),机器人技术与系统国家重点实验室开放基金项目(SKLRS-2022-KF-18),国家自然科学基金面上项目 (52175012),国家自然科学基金青年项目(52205013)


Optimization Method of Man-Machine Cooperative Decision-Making Instructions for Hexapod Robot Based on Finite State Machine
Author:
Affiliation:

Harbin University of Science and Technology

Fund Project:

The Key Program of National Natural Science Foundation of China (91948202), Joint Guidance Project of Natural Science Foundation of Heilongjiang Provincial of China (LH2020E088), Open Fund Project of State Key Laboratory of Robotics and Systems (SKLRS-2022-KF-18), The General Program of National Natural Science Foundation of China (52175012), National Natural Science Foundation of China Youth Project (52205013)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对六足机器人在复杂环境下如何决策出最优人机指令组合问题,提出将操控指令权限分配的过程分为离线和在线两个阶段。在离线阶段,将六足机器人运动过程中机身的稳定裕度、能量消耗和与障碍物的碰撞 接触时间作为指令优选的约束条件,并建立评价函数实现在进入地形前获得最优的操控指令组合;在线阶段依据上述三个约束条件量化有限状态机网络中的状态转移概率,并人为设置约束条件阈值作为触发条件,向最优的人机决策指令状态进行转换。最后利用半物理仿真系统进行实验,结果表明本文提出的决策方法在稳定裕度上相对于其它操控方法提高约 15%-25%;能量消耗上降低了约 10%-50%;碰撞接触时间上降低了约 10%-50%。

    Abstract:

    Aiming at the problem of how hexapod robots make optimal human-machine command combinations in complex environments, it is proposed to divide the process of assigning control command permissions into two stages: offline and online. In the offline stage, the stability margin of the hexapod robot body, energy consumption, and collision contact time with obstacles during the motion process are used as constraints for command optimization, and an evaluation function is established to obtain the optimal control command combination before entering the terrain? In the online stage, the state transition probability in the finite state machine network is quantified based on the three constraints mentioned above, and the constraint threshold is manually set as the triggering condition to transition to the optimal human-machine decision instruction state. Finally, experiments were conducted using a semi physical simulation system, and the results showed that the decision method proposed in this paper improved the stability margin by about 15% -25% compared to other control methods? The energy consumption has decreased by about 10% -50%? The collision contact time has been reduced by about 10% -50%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-18
  • 最后修改日期:2024-08-05
  • 录用日期:2024-04-01
  • 在线发布日期: 2024-05-07
  • 出版日期:
文章二维码