群集正反向回溯人工生态系统优化算法的ELM超参优选
CSTR:
作者:
作者单位:

1. 辽宁工程技术大学 智能科学与优化研究所,辽宁 阜新 123000;2. 辽宁工程技术大学 运筹与优化研究院,辽宁 阜新 123000

作者简介:

通讯作者:

E-mail: zhaoshijie@lntu.edu.cn.

中图分类号:

TP183;O29

基金项目:

中国博士后基金面上项目(2021M701537);辽宁省教育厅基金项目(LJ2019JL017);辽宁省科技厅博士科研启动基金项目(2019-BS-118).


Super parameter optimization of ELM by artificial ecosystem-based optimization with crowding forward-backward and backtracking tips
Author:
Affiliation:

1. Institute of Intelligence Science and Optimization,Liaoning Technical University,Fuxin 123000,China;2. Institute for Optimization and Decision Analytics,Liaoning Technical University,Fuxin 123000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为有效改善极限学习机(ELM)的分类识别性能,提出一种融合群集正反向回溯的改进人工生态系统优化算法(IAEO),并用于ELM的超参优选.群集正反向引导机制启发于生态系统中消费者数量因上下级捕食关系的正反向调控机理而被构建,局部回溯开采策略则通过继承种群历史最优信息以动态再挖掘分解者的局部微小邻域,并引导种群进化以实现局部优化性能的改善.数值实验结果表明,两种改进策略可有效改善AEO算法的全局勘探和局部开采性能,IAEO算法具有较高的收敛精度、强稳健性和良好的高维优化适用性;同时验证了所提IAEO算法在ELM超参优化以增强分类泛化性能的有效性和可行性.

    Abstract:

    To effectively enhance the classification recognition performance of the extreme learning machine(ELM), an improved artificial ecosystem optimization algorithm(IAEO) with crowding forward-backward and backtracking tactics is proposed, and is employed to optimize the super parameter of the ELM. The crowding forward-backward guidance mechanism is inspired by changes of the number of consumers in an ecosystem, and is constructed by modeling the forward-backward regulating mechanism of the predator-prey relationships between the superior and subordinate organisms. And the local backtracking exploitation strategy inherits the population history optimal information to dynamically re-exploit the local micro neighborhood of decomposers, which contributes to guiding the population evolution and improving the local optimization ability. Numerical results show that two kinds of improved strategies can effectively improve the global exploration and local exploitation performance of the AEO. And the proposed IAEO has higher convergence accuracy, stronger robustness, better high-dimensional optimization applicability. The effectiveness and feasibility of the proposed IAEO algorithm in improving classification performance of the ELM by optimizing its super parameter are showed.

    参考文献
    相似文献
    引证文献
引用本文

赵世杰,马世林,王梦晨,等.群集正反向回溯人工生态系统优化算法的ELM超参优选[J].控制与决策,2023,38(4):921-928

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-22
  • 出版日期: 2023-04-20
文章二维码