基于群智能-一致性理论的无人机编队全过程飞行航迹规划方法
CSTR:
作者:
作者单位:

1. 中国电子科技集团公司 第十研究所,成都 610036;2. 重庆大学 航空航天学院,重庆 400044

作者简介:

通讯作者:

E-mail: cquwuyu@cqu.edu.cn.

中图分类号:

V249

基金项目:

国家自然科学基金项目(52102453);重庆市自然科学基金项目(cstc2020jcyj-msxmX0602).


Swarm intelligence and consensus theory based trajectory planning for a complete flight of UAV formation
Author:
Affiliation:

1. The 10th Research Institute,China Electronics Technology Group Corporation,Chengdu 610036,China;2. College of Aerospace Engineering,Chongqing University,Chongqing 400044,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机编队执行任务全过程飞行规划问题,提出一种基于多步粒子群优化的无人机编队航迹规划算法.首先,对无人机和执行任务策略进行建模,将编队执行任务全过程划分为编队成形、执行任务、返航、解散和无人机降落5个阶段,设计不同阶段的飞行策略;其次,针对不同的终端约束条件,设计多类多层优化指标,提出多步粒子群算法,并引入模型预测控制滚动优化航路点,得到适用于不同阶段的能严格满足约束条件的航路规划方法;然后,建立旋转坐标系,将航路点信息转换为编队控制律中的理想航向和高度信息,得到能通过航路点的编队控制算法;最后,利用编队控制算法去执行航路规划方法给出的航路点,生成航迹,得到编队航迹规划算法.仿真结果表明,所提规划方法比传统方法更适用于编队飞行,能为编队规划执行任务全过程的平滑航迹,具有良好的通用性.

    Abstract:

    For the whole process trajectory planning of UAV formation performing tasks, a UAV formation trajectory planning algorithm based on the multi-step particle swarm optimization(PSO) algorithm is proposed. First, the UAV model and the mission strategy model are established. The whole process of the formation performing tasks is divided into 5 phases: formation forming, task execution, returning, dismissing and UAV landing, and the flight strategies of different phases are designed. Second, multi-class and multi-layer optimization indexes are designed and a multi-step PSO algorithm is used to optimize waypoints according to different terminal constraints. Model predictive control(MPC) is introduced for rolling optimization of waypoints, and a route planning method suitable for different phases that can strictly meet the constraints is obtained. Then, a rotating coordinate system is established to convert the waypoint information into the ideal heading and altitude information in the formation control law, and the formation control algorithm that can pass waypoints is obtained. Finally, the formation control algorithm is used to execute the waypoints given by the route planning method to generate the trajectory, and the formation trajectory planning algorithm is obtained. The simulation results show that the proposed planning method with good generality is more suitable for formation flight than the traditional method, and it can plan a smooth trajectory of the whole process for formation to execute missions.

    参考文献
    相似文献
    引证文献
引用本文

苟进展,吴宇,邓嘉宁.基于群智能-一致性理论的无人机编队全过程飞行航迹规划方法[J].控制与决策,2023,38(5):1464-1472

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-04-18
  • 出版日期: 2023-05-20
文章二维码