基于随机配置网络的轻量级人体行为识别模型
CSTR:
作者:
作者单位:

中国矿业大学 信息与控制工程学院,江苏 徐州 221116

作者简介:

通讯作者:

E-mail: weidai@cumt.edu.cn.

中图分类号:

TP391.4

基金项目:

国家自然科学基金面上项目(61973306);江苏省自然科学基金优秀青年项目(BK20200086).


A lightweight model for human activity recognition using stochastic configuration networks
Author:
Affiliation:

School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221116,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对智能手机受限的计算和存储环境等问题,提出基于流形正则化和QR分解的轻量级随机配置网络人体行为识别模型.首先,利用流形正则化解决输入数据被随机映射到SCNs隐含层空间后出现难以预测的非线性分布问题,以提升模型结构的轻量性;其次,采用QR分解降低输出权值计算复杂度,进一步提高模型建模过程的轻量性;最后,在两个人体行为识别数据集上评估所提出模型在模型识别精度和轻量性方面的有效性.实验结果表明,与SCNs、CNN等相比,所提出模型对于人体行为识别问题不仅可以实现识别精度的提高,还能有效降低计算复杂度,提高模型结构的紧致性.

    Abstract:

    Aiming at the limited computing and storage environment of smart phones, this paper proposes a lightweight human activity recognition model based on stochastic configuration network with manifold regularization and QR decomposition. Firstly, manifold regularization is used to solve the problem of unpredictable nonlinear distribution after the input data are randomly mapped to the hidden layer space of SCNs, so as to improve the lightweight of the model structure. Secondly, QR decomposition is used to reduce the computational complexity of the output weights and further improve the lightweight of the model modeling process. Finally, based on two human activity data sets, the effectiveness of the proposed model in model recognition accuracy and lightweight is evaluated. Experimental results show that, compared with SCNs, CNN, etc, the proposed model can not only improve the accuracy of activity recognition, but also effectively reduce the calculation complexity and improve the compactness of the model structure.

    参考文献
    相似文献
    引证文献
引用本文

南静,宁传峰,建中华,等.基于随机配置网络的轻量级人体行为识别模型[J].控制与决策,2023,38(6):1541-1550

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-13
  • 出版日期: 2023-06-20
文章二维码