随机选择全局多样化细粒度图像分类
CSTR:
作者:
作者单位:

西安建筑科技大学 信息与控制工程学院,西安 710055

作者简介:

通讯作者:

E-mail: guanghuil@163.com.

中图分类号:

TP391

基金项目:

国家自然科学基金项目(52278125);陕西省重点研发计划项目(2021SF-429).


Random selection global diversification fine-grained image classification
Author:
Affiliation:

College of Information and Control Engineering,Xián University of Architecture and Technology,Xián 710055,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对细粒度图像分类任务中潜在的可区分特征太过细微难以捕捉、忽视不同特征间的关系等问题,提出一种随机选择全局多样化分类网络模型.首先,尝试以ConvNeXt作为主干来提升分类性能,并设计随机消除增强选择策略(REBS),通过特征消除分支和特征增强分支相互作用,促进网络学习更多相关信息,捕获潜在的可区分特征;然后,提出全局多样化模块(GDM),对不同层次的特征图进行交互建模,提高网络对比线索的能力;最后,建立内标压印数据集,将细粒度算法应用于真伪鉴定工作,实现细粒度图像分类任务在自然场景下的实际应用.所提出方法在CUB-200-2011、Stanford Cars和FGVC-Aircraft三个公开数据集上分别达到了91.9%、93.8%和93.5%的准确率,相比其他先进对比方法性能有较大幅度提升.在自建的内标压印数据集上达到了96.8%的准确率,能够实现真伪图像的准确分类.

    Abstract:

    A random selection global diversified classification network model is presented to deal with the difficulty of capturing the potential distinguishable features in fine-grained image classification and the tendency to ignore the relationship between different features. Firstly, the ConvNeXt is taken as the backbone to improve classification performance, and a random elimination boosting selection(REBS) strategy is designed to promote network learning more image information and capture potential distinguishable features through the enhancement of the interaction between the feature elimination and feature boosting branches. After that, the global diversification module(GDM) is proposed focusing on modelling feature maps of different levels interactively to enhance the comparison ability of network. Meanwhile, the dataset of logo imprint image is established, and the fine-grained algorithm is applied to conduct authenticity identification, which realizes the practical application of fine-grained image classification task in natural scenes. This network achieves 91.9%, 93.8% and 93.5% accuracy on three open datasets, CUB-200-2011, Stanford Cars and FGVC-Aircraft, respectively. Compared with other advanced comparison methods, the presented method greatly upgrades the comparison performance. The accuracy of 96.8% is achieved on the self-built dataset, which indicates the capacity of the network in accurate classification of true and fake images.

    参考文献
    相似文献
    引证文献
引用本文

刘光辉,占华,孟月波.随机选择全局多样化细粒度图像分类[J].控制与决策,2023,38(9):2622-2631

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-04
  • 出版日期: 2023-09-20
文章二维码