一种DDMCN火焰图像特征提取的转炉炼钢碳含量实时预测方法
CSTR:
作者:
作者单位:

1. 昆明理工大学 信息工程与自动化学院,昆明 650500;2. 昆明理工大学 云南省人工智能重点实验室,昆明 650500;3. 云南昆钢电子信息科技有限公司,昆明 650500

作者简介:

通讯作者:

E-mail: liuhui621@126.com.

中图分类号:

TP391

基金项目:

国家自然科学基金项目(61863018,62263016);云南省科技厅应用基础研究项目(202001AT070038).


A real-time prediction method of carbon content in converter steelmaking based on DDMCN flame image feature extraction
Author:
Affiliation:

1. Faculty of Information Engineering & Automation,Kunming University of Science and Technology,Kunming650500,China;2. Yunnan Key Laboratory of Artificial Intelligence,Kunming University of Science and Technology,Kunming 650500,China;3. Yunnan Kungang Electronic Information Technology Co., Ltd,Kunming 650500,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    转炉炼钢终点控制作为吹炼末期重要操作的关键是碳含量准确实时预测,而熔池中碳含量的氧化速率能够反映在炉口火焰纹理变化上,因此提取火焰纹理的准确特征是终点碳含量预测的关键,但是火焰纹理具有多方向多尺度不规则的特征描述难点.鉴于此,提出一种导数非线性映射方向加权多层复杂网络彩色纹理描述符,符合火焰不规则纹理的多尺度多方向特点.首先,将HSI空间下火焰图像映射至相位空间以增强空间位置关联信息;然后,基于复杂网络给出一种反映不同尺度顶点间连续变化的导数关系权重公式,结合方向信息构建炉口火焰图像的多尺度不规则方向加权彩色纹理复杂网络;最后,计算顶点方向加权度特征量化复杂网络拓扑连接模式,构建火焰彩色纹理特征,建立KNN回归模型预测终点碳含量.实验结果表明,所提出算法满足实际转炉炼钢吹炼过程实时性要求.

    Abstract:

    As an important operation at the end of converter steelmaking, the key to the end-point control is the accurate and real-time prediction of carbon content. And the oxidation rate of carbon content in the molten pool can be reflected in the variation of the flame texture at the furnace mouth. Therefore, the extraction of accurate characteristics of flame texture is the key to predict end-point carbon content. However, the difficulty of flame texture feature description lies in its multi-directional and multi-scale irregular characteristics. This paper proposes a derivative nonlinear mapping direction weighted multilayer complex network color texture descriptor, which conforms to the multi-scale and multi-directional characteristics of flame irregular texture. Firstly, the fire flame image under the HSI space is mapped to the phase space to enhance spatial location-related information. Then, based on the complex network, a weighting formula of the derivative relationship that reflects the continuous changes between the vertices of different scales is given. And the multi-scale irregular direction weighted color texture complex network of the furnace mouth flame image is constructed by combining the direction information. Finally, the direction weighting degree feature of the vertex is calculated to quantify the connection mode of the complex network topology, and the color texture feature of the flame is constructed. And the end carbon content is predicted by the KNN regression model. The results show that the algorithm meets the real-time requirements of the actual converter steelmaking process.

    参考文献
    相似文献
    引证文献
引用本文

刘旭琛,刘辉,陈甫刚,等.一种DDMCN火焰图像特征提取的转炉炼钢碳含量实时预测方法[J].控制与决策,2023,38(10):2795-2804

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-19
  • 出版日期: 2023-10-20
文章二维码