基于改进灰狼群优化算法的水下机器人海底电缆定位算法
CSTR:
作者:
作者单位:

福州大学

作者简介:

通讯作者:

中图分类号:

TM614;TM615

基金项目:


Submarine Cable Localization Algorithm for Underwater Robots Based on Improved Grey Wolf Optimization Algorithm
Author:
Affiliation:

Fuzhou University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着海上风力发电和光伏发电的快速发展, 海洋输电工程的地位越来越重要, 海底电缆的应用也越来越 广泛. 获得精确的海底电缆的位置不仅有利于日常巡检, 而且提高了故障检测的效率, 因此海底电缆的路由定位 和故障检测将会是未来维护和维修的重要环节. 由于海底电缆的小直径和内部电流的变化性, 导致了定位准确度 的下降以及定位难度的上升. 针对上述问题, 本文首先基于海底环境和水下机器人, 利用三芯铠装海底电缆的电 缆结构推导了海底电缆外磁场的近似方程. 水下机器人根据检测到的磁感应强度值进行姿态调整, 在此基础上, 提出了一种基于改进灰狼优化算法 (Improved Grey Wolf Optimization,IGWO) 的海底电缆定位算法, 利用基于磁 通密度模的适应度函数, 设计了一种用于海底电缆探测的在线路径定位方法. 最后, 通过仿真实验, 验证了 IGWO 算法实现海底电缆定位的精确性与有效性.

    Abstract:

    With the rapid development of offshore wind power and photovoltaic power generation, the importance of marine power transmission projects is increasing and the application of submarine cables is also becoming increasingly widespread. Accurate identification of the location of submarine cables is not only beneficial for routine inspections but also enhances the efficiency of fault detection. Therefore, the routing, positioning, and fault detection of submarine cables will play a crucial role in future repair and maintenance operations. The small diameter of submarine cables and the variability of internal currents have led to a decrease in positioning accuracy and an increase in positioning difficulty. To address the aforementioned issues, this study first derives the approximate equation for the external magnetic field of submarine cables based on the underwater environment and underwater robotics, utilizing the cable structure of three-core armored submarine cables. The underwater robotic system performs attitude adjustments based on the detected magnetic induction intensity values. Building upon this, a submarine cable positioning algorithm is proposed using an Improved Grey Wolf Optimization (IGWO) algorithm. The algorithm utilizes a fitness function based on the magnetic flux density model and incorporates an online path localization method specifically designed for submarine cable detection. Finally, the accuracy and effectiveness of the IGWO algorithm are validated through simulation experiments.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-04
  • 最后修改日期:2024-07-05
  • 录用日期:2024-04-07
  • 在线发布日期: 2024-05-03
  • 出版日期:
文章二维码