基于分位数回归的服务时长区间预测及鲁棒手术指派方法
CSTR:
作者:
作者单位:

东北大学

作者简介:

通讯作者:

中图分类号:

C931

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Quantile regression-based prediction of service time interval and robust surgery allocation method
Author:
Affiliation:

Northeastern University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    手术部是医院的核心部门, 合理制定手术计划有助于医疗资源的高效配置, 对提升医疗服务质量至关重要. 手术时长的不确定性为手术调度带来了挑战. 为了应对手术时长的不确定性, 本文基于历史手术数据, 应用方差膨胀因子减少患者特征之间共线性, 基于分位数回归刻画手术时长区间, 构建了患者特征驱动的手术时长不确定集. 在此基础上, 考虑术后重症监护室床位资源限制, 建立了鲁棒手术指派模型, 决策开放的手术室和患者的手术日期. 基于真实数据测试方法的有效性. 实验结果显示, 通过调节模型参数, 本文所提出模型在降低运营成本和减少手术室加班时间方面优于确定性模型; 而与随机规划模型相比, 在牺牲较少加班时长情况下, 降低了总运营成本, 并在求解时间上具有优势.

    Abstract:

    The surgery department is the core division of hospitals. Reasonably formulating surgical plans is crucial for efficient allocation of medical resources and essential for improving the quality of healthcare services. The uncertainty of surgery duration presents challenges for surgery scheduling. To address the uncertainty of surgery duration, this paper utilizes historical surgical data and applies the variance inflation factors to reduce multicollinearity between patient features. Quantile regression is used to characterize the interval of surgery duration, and an uncertainty set of surgery duration driven by patient feature is then constructed. On this basis, considering the resource constraints of the beds in downstream intensive care unit, a robust surgery allocation model is developed to decide on the allocation of operating rooms and the scheduling of patients’ surgery date. The effectiveness of the proposed method is tested using real data, and the experimental results show that, by adjusting the model parameters, the proposed model outperforms the corresponding deterministic model in terms of decreasing the overall operating cost and alleviating the overtime hours; compared to the stochastic programming model, it reduces the overall operating cost and have advantages in terms of computational time with a sacrifice of fewer overtime hours.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-17
  • 最后修改日期:2024-08-06
  • 录用日期:2024-04-24
  • 在线发布日期: 2024-05-07
  • 出版日期:
文章二维码