基于颜色线模型和多尺度融合的水下图像增强
CSTR:
作者:
作者单位:

1.华北理工大学电气工程学院;2.燕山大学电气工程学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

河北省教育厅科学研究项目资助(QN2024147).


Underwater Image Enhancement Based on Color Line Model and Multi-Scale Fusion
Author:
Affiliation:

1.College of Electrical Engineering, North China University of Science and Technology University;2.Institute of Electrical Engineering, Yanshan University

Fund Project:

Funded by Science Research Project of Hebei Education Department (QN2024147).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对水下图像出现蓝绿色偏、雾化和噪声等问题,提出一种基于颜色线模型和多尺度融合的水下图像增强算法.首先,设计一种局部自适应颜色校正方法对退化图像进行预处理,提高图像颜色线拟合效果并降低图像色偏的程度;然后,构建一种利用颜色线和背景光矢量求解偏置来估计透射率的凸优化算法,求得准确的模型参数来恢复图像实现图像去雾;接着,将预处理后的图像利用白平衡算法来补偿颜色的深度选择性吸收所造成的偏色,将白平衡处理后的图像分别利用伽玛校正和基于颜色线约束的噪声抑制算法进行处理,分别得到提高全局对比度和抑制噪声的图像;最后,对去雾、对比度增强和低噪声图像进行多尺度融合,得到特征丰富的水下增强图像.实验结果表明:所提出方法能够有效解决水下图像的色偏、雾化和噪声现象;相对于各对比算法,在水下彩色图像质量评价指标和峰值信噪比上分别提高了18.37%和42.16%,更好地保留了水下图像的颜色并降低了图像噪声.

    Abstract:

    Aiming to address issues such as blue-green color cast, haze, and noise in underwater images, a color-line model-based and multi-scale fusion-based underwater image enhancement algorithm is proposed. At the first stage, a local adaptive color correction method is designed to preprocess the degraded image to improve the color line fitting effect and reduce the degree of image color bias. Afterwards, a convex optimization algorithm is constructed to estimate the transmittance by solving the bias using the color line and the background light vector, and the accurate model parameters are obtained to recover the image to achieve the image defogging. Additionally, the white balance algorithm is used to compensate for the depth-selective absorption of color deviation in the pre-processed image. Meanwhile, the white balance processed image is processed by gamma correction and noise suppression algorithm based on color line constraints to improve the global contrast and suppress the noise, respectively. Ultimately, multi-scale fusion of the defogged, contrast-enhanced and noise-suppressed images is performed to obtain a feature-rich underwater enhanced image. Experimental results show that the proposed method can effectively solve the phenomena of color deviation, atomization and noise in underwater images. Compared with the comparison algorithms, the underwater color image quality evaluation index and peak signal-to-noise ratio are improved by 18.37% and 42.16%, respectively, and the enhancement results can better retain the underwater color image and reduce the image noise.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-21
  • 最后修改日期:2024-06-13
  • 录用日期:2024-04-07
  • 在线发布日期: 2024-05-03
  • 出版日期:
文章二维码