基于单双目融合的AUV坐落式回收光视觉引导算法
CSTR:
作者:
作者单位:

1.上海交通大学;2.河南省水下智能装备重点实验室

作者简介:

通讯作者:

中图分类号:

TP274+.2

基金项目:

河南省水下智能装备重点实验室基金项目(KL02B2301);国家自然科学基金项目(62203299,62373246);中央引导资金项目(Z20221343002)


Light Visual Guidance Algorithm for AUV Situated Recovery Based on Monocular and Binocular Fusion
Author:
Affiliation:

Shanghai Jiao Tong University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    自主水下航行器(Autonomous Underwater Vehicle,AUV)在任务过程中或完成后需通过自主回收实现能源补充与数据下载等操作,是否能进行高效、精准的回收引导决定了AUV的回收效率,成为其能否广泛应用的关键。针对AUV坐落式回收过程中的近距离光学引导定位问题,本文提出了一种基于深度学习的单双目位姿测量算法。首先,面向恶劣的水下光学成像条件,结合暗通道先验去雾和YOLO v9目标检测网络,实现了一种可适应不同水质、光照强度且鲁棒性强、可靠性高的引导光源提取算法。同时,针对回收过程中的特征匹配问题,设计了一种不依赖于AUV速度的全向特征匹配算法,实现了3D-2D特征匹配。此外,针对坐落式回收典型的多阶段引导特点,分别基于PnP原理和SVD分解设计了面向不同阶段的单、双目引导定位算法。最后,基于多次仿真和实物试验,验证了算法在精确位姿估计方面的可行性和有效性。

    Abstract:

    The Autonomous Underwater Vehicle (AUV) needs to perform operations such as energy replenishment and data download through autonomous recovery during or after a mission. The efficiency and accuracy of the recovery guidance determine the recovery efficiency of the AUV, which is crucial for its widespread application. To address short-range optical guidance and positioning in AUV recovery, this paper proposes a deep learning-based monocular and binocular pose measurement algorithm. Firstly, to address harsh underwater imaging conditions, a robust and reliable guided light source extraction algorithm is implemented, combining dark channel prior dehazing and the YOLO v9 target detection network, adaptable to different water qualities and light intensities. At the same time, in response to the feature matching problem in the recovery process, an omnidirectional feature matching algorithm that does not depend on the AUV speed to achieve 3D-2D feature matching is designed. In addition, in view of the typical multi-stage guidance characteristics of situated recovery, single and binocular guidance and positioning algorithm for different stages are designed based on the PnP principle and SVD decomposition. Finally, based on multiple simulations and physical experiments, the feasibility and effectiveness of the algorithm in accurate pose estimation are verified.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-31
  • 最后修改日期:2024-09-21
  • 录用日期:2024-07-06
  • 在线发布日期: 2024-08-01
  • 出版日期:
文章二维码