基于并行双向时间卷积网络和双向长短期记忆网络的轴承剩余使用寿命预测方法
CSTR:
作者:
作者单位:

1. 兰州理工大学 计算机与通信学院,兰州 730050;2. 兰州城市学院 信息工程学院,兰州 730050;3. 兰州理工大学 电气工程与信息工程学院,兰州 730050

作者简介:

通讯作者:

E-mail: haop1115@163.com.

中图分类号:

TH133.3

基金项目:

国家重点研发计划项目(2020YFB1713600);甘肃省重点研发计划项目(21YF5GA072);甘肃省教育厅产业支撑计划项目(2021CYZC-02).


Remaining useful life prediction method for bearing based on parallel bidirectional temporal convolutional network and bidirectional long and short-term memory network
Author:
Affiliation:

1. College of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China;2. College of Information Engineering,Lanzhou City University,Lanzhou 730050,China;3. College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在基于深度学习的轴承剩余使用寿命(RUL)预测方法中,时间卷积网络(TCN)忽略了振动数据中未来时间信息的重要性,长短期记忆网络(LSTM)难以有效地学习振动数据的长时间序列特征.针对以上问题,提出一种基于并行双向时间卷积网络(Bi-TCN)和双向长短期记忆网络(Bi-LSTM)的轴承RUL预测方法.首先,对多传感器数据进行归一化处理,并将每个传感器数据进行通道合并,实现多传感器数据的高效融合;然后,采用Bi-TCN和Bi-LSTM构建并行的双分支特征学习网络,其中Bi-TCN提取数据的双向长时间序列特征,Bi-LSTM提取数据的时间相关特征;同时,设计一种特征融合注意力机制,该机制分别计算Bi-TCN和Bi-LSTM的输出权重,以实现两种网络输出特征的自适应加权融合;最后,融合特征通过全连接层并输出轴承RUL的预测结果.利用西安交通大学轴承数据集和PHM 2012轴承数据集进行RUL预测实验,实验结果表明,与其他先进的预测方法相比,所提出方法可以准确预测更多类型轴承的RUL,同时具有更低的预测误差.

    Abstract:

    In remaining useful life(RUL) prediction methods for bearings based on deep learning, temporal convolutional networks(TCNs) does not consider the future time information of vibration data, long and short-term memory(LSTM) networks are difficult to learn long time series data features effectively. To solve the above problems, a bearing RUL prediction method based on the parallel bidirectional temporal convolutional network and bidirectional long and short-term memory network is proposed. First, the multi-sensor data are normalized, and the data of each sensor are merged by channel to achieve efficient fusion of multi-sensor data. Then, a parallel dual network structure is constructed by using the Bi-TCN and Bi-LSTM, in which the Bi-TCN goes to learn the bi-directional long time series features and the Bi-LSTM goes to learn the time-dependent features, so the parallel dual network structure can learn richer vibration signal features. Meanwhile, a feature fusion attention mechanism is developed to fuse the output features of the dual network structure, which calculates the output weights of the Bi-TCN and Bi-LSTM to achieve adaptive weighted fusion of the output features. Finally, the fused features are passed through the fully connected layer to output the prediction results of the bearing RUL. RUL prediction experiments are conducted using Xián Jiaotong University bearing dataset and PHM 2012 bearing dataset respectively. The results show that, compared with the advanced prediction methods, the proposed method can accurately predict the RUL of more types of bearings and has lower prediction errors.

    参考文献
    相似文献
    引证文献
引用本文

梁浩鹏,曹洁,赵小强.基于并行双向时间卷积网络和双向长短期记忆网络的轴承剩余使用寿命预测方法[J].控制与决策,2024,39(4):1288-1296

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-15
  • 出版日期: 2024-04-20
文章二维码