基于Petri网和人工势场的柔性制造启发式优化方法
CSTR:
作者:
作者单位:

1. 华侨大学 信息科学与工程学院,福建 厦门 361021;2. 福建省电机控制与系统优化调度工程技术研究中心,福建 厦门 361021

作者简介:

通讯作者:

E-mail: jlluo@hqu.edu.cn.

中图分类号:

TH166

基金项目:

国家自然科学基金项目(61973130);福建省中央引导地方科技发展专项项目(2022L2012).


Heuristic optimal method of flexible manufacturing based on Petri nets and artificial potential field
Author:
Affiliation:

1. College of Information Science and Engineering,Huaqiao University,Xiamen 361021,China;2. Fujian Engineering Research Center of Motor Control and System Optimal Schedule,Xiamen 361021,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    制造系统优化调度是NP难组合优化问题,而自动导引车(AGV)路径规划与任务分配紧密耦合,又极大加剧了问题的复杂性.基于此,提出一种基于Petri网和人工势场的启发式优化方法.首先,将制造系统的工艺工序描述为一个任务Petri网,将AGV系统描述为一个路径Petri网,将两个网合成在一起;然后,利用Petri网的拓扑结构,为网络结点设计势能参数,从而为Petri网赋予一个人工势场;接着,利用人工势场设计制造系统加工时间的启发式函数,并构建Petri网人工势场启发式A*算法,其中包括最大势差启发式函数和总体势差启发式函数,并验证最大势差启发式函数是可采纳的;最后,进行两组数值实验,实验结果表明,最大势差A*算法能够得到最优解,且平均计算效率比Dijkstra算法提高57%,但是无法满足大任务量的调度需求,而总体势差A*算法比最大势差A*算法平均计算效率提高至少1个数量级,能够在有限时间内求解AGV任务分配和路径规划的联合问题.

    Abstract:

    The optimal scheduling of manufacturing systems is a NP-hard combinatorial optimization problem, and the tight coupling between the automated guided vehicle(AGV) path planing and task allocation intensifies its complexity. To address this issue, a heuristic optimization method based on Petri nets and artificial potential fields is proposed. First, the processes of a manufacturing system and the AGV system are described as a task Petri net and a path one respectively, which are then combined. Second, the potential energy parameters of the net nodes are designed using the topology of Petri nets, thereby assigning an artificial potential field to the Petri net. Third, two heuristic functions are designed using artificial potential fields, including a maximum-potential-difference heuristic function and a total-potential-difference one, and the corresponding A* algorithm is constructed. Experimental results show that the maximum-potential-difference heuristic function is admissible. Finally, two sets of numerical experiments are performed to show that the maximum-potential-difference A* algorithm can obtain the optimal solution, and the average computing efficiency is 57% higher than that of the Dijkstra algorithm, but it cannot meet the requirements of large task quantity scheduling, while the total-potential-difference heuristic A* algorithm is at least one order of magnitude more efficient on average than the former algorithm that can solve the joint problem of AGV task allocation and path planning in a limited time.

    参考文献
    相似文献
    引证文献
引用本文

伊思嘉,罗继亮,李旭航,等.基于Petri网和人工势场的柔性制造启发式优化方法[J].控制与决策,2024,39(6):1977-1985

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-11
  • 出版日期: 2024-06-20
文章二维码