基于时间分段提高对称网络能控性
CSTR:
作者:
作者单位:

东北大学秦皇岛分校 控制工程学院,河北 秦皇岛 066004

作者简介:

通讯作者:

E-mail: wlfkz@qq.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61573077,U1808205);河北省自然科学基金面上项目(F2000501005).


Improving controllability of symmetric network based on time segmentation
Author:
Affiliation:

School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    网络结构对实现网络完全能控有很大的影响,在不增加驱动节点的前提下,仅基于网络结构来优化复杂网络的能控性具有重要意义.基于此,提出一种将静态对称网络划分成由多个快照(每个快照是一个静态网络)组成的动态时变网络的方法,利用时变网络的优势减少驱动节点提高网络能控性;给出由多个快照组成时变对称网络能控性的判据,快照的最优划分,驱动节点数量与快照数量的关系;通过实际例子说明该划分方法的应用过程,并在模型网络和真实网络进行仿真验证,结果表明通过时间分段的方法可以有效减少对称网络中驱动节点的数量,提高网络能控性.

    Abstract:

    Network structure has a great impact on the realization of complete network control. Therefore, it is of great significance to optimize the controllability of complex networks only based on network structure without adding drive nodes. This paper proposes a method of dividing a static symmetric network into a dynamic time-varying network composed of multiple snapshots(each snapshot is a static network), which uses the advantages of the time-varying network to reduce the number of driving nodes and improve the network controllability. The controllability criteria of the time-varying symmetric network composed of multiple snapshots, the optimal partition of snapshots, and the relationship between the number of drive nodes and the number of snapshots are given. The application process of the partition method is illustrated by an actual example, and the simulation results are verified in the model network and the real network. The results show that the method of time segmentation can effectively reduce the number of driving nodes in the symmetric network and improve the network controllability.

    参考文献
    相似文献
    引证文献
引用本文

王立夫,寇晓宇,孔芝,等.基于时间分段提高对称网络能控性[J].控制与决策,2024,39(8):2671-2678

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-16
  • 出版日期: 2024-08-20
文章二维码