融合分层分块信息的轧制过程运行状态评估方法及应用
CSTR:
作者:
作者单位:

1. 北京科技大学 自动化学院,北京 100083;2. 工业过程知识自动化教育部重点实验室,北京 100083

作者简介:

通讯作者:

E-mail: kaizhang@ustb.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金面上项目(62073032);国家自然科学基金区域联合重点项目(U21A20483).


An operating performance assessment method for tolling processes via integrating hierarchical and block information
Author:
Affiliation:

1. School of Automation,University of Science and Technology Beijing,Beijing 100083,China;2. Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education,Beijing 100083,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    工业过程运行状态评估方法是对过程当前运行状态进行合理的评价,为工业过程的安全、高效运行提供有益的指导.带钢轧制过程具有流程长且系统层级多等特点,而传统的运行状态评估往往采用集中式的评估方法,难以对轧制过程全流程的运行状态进行合理的评估.针对此问题,提出一种融合分层分块信息的轧制过程运行状态评估方法.采用一种多层级分块的评估策略,将全流程分为若干个层级和子块,提高评估结果的可解释性.提出一种联合核主成分分析(kernel principal component analysis,KPCA)和t-分布随机邻域嵌入算法(t-distributed stochastic neighbor embedding,t-SNE)的特征提取方法,并行地提取全局和局部的特征信息.进而,针对传统支持向量机(support vector machine,SVM)输出结果为硬判型输出,将SVM的输出结果映射为后验概率,并通过D-S证据理论融合多个层级的运行状态评估结果,从而实现决策层面的信息融合,提高评估结果的准确性.最后,将所提出方法应用于实际带钢轧制过程,与各类传统的方法相比评估准确率提高近18%.

    Abstract:

    Operating performance assessment methods are performed to evaluate the operating performance of industrial processes so as to provide helpful guidance for safe and high-efficient operations. The rolling processes are always featured with plant-wide characteristics and equipped with hierarchical information systems, while traditional assessment methods are centralized, which, thus, are less efficient. To solve this problem, this paper proposes a method that integrates hierarchical and block information. Firstly, a hierarchical strategy is adopted, and the entire process are partitioned into several levels and sub-blocks such that the interpretability of the assessment results can be improved. Then, in order to extract comprehensive operating state features, a combination of kernel principal component analysis and t-distributed stochastic neighbor embedding-based method is proposed, which can capture both global and local features in a parallel manner. In addition, to overcome the hard decision-making results caused by support vector machines(SVMs), this paper transfers the results of the SVM to calculate the posterior probability, and makes use of the D-S evidence theory to fuse the decision-making process. Finally, the proposed method is applied to a real hot rolling mill process, the results show that it improves at least 18% assessment rate compared with several traditional methods.

    参考文献
    相似文献
    引证文献
引用本文

张永博,张凯,彭开香,等.融合分层分块信息的轧制过程运行状态评估方法及应用[J].控制与决策,2024,39(8):2694-2702

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-16
  • 出版日期: 2024-08-20
文章二维码