基于改进YOLOv4的轻量化路侧视角多目标检测算法
CSTR:
作者:
作者单位:

1. 燕山大学 车辆与能源学院,河北 秦皇岛 066000;2. 吉林大学 交通学院,长春 130022

作者简介:

通讯作者:

E-mail: guobaicang@ysu.edu.cn.

中图分类号:

U463.6

基金项目:

国家自然科学基金项目(52072333);河北省省级科技计划项目(21340801D);河北省高等学校科学技术研究项目(BJK2023026).


A lightweight multiple object detection algorithm for roadside perspective based on improved YOLOv4
Author:
Affiliation:

1. College of Vehicles and Energy,Yanshan University,Qinhuangdao 066000,China;2. College of Transportation,Jilin University,Changchun 130022,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    面向道路交通场景中多类别、可变规模的目标车辆检测需求,如何有效地以低算力构建结构化数据,实现超视距感知并解决单车视距限制,是自动驾驶汽车环境感知技术领域亟待解决的重要问题之一.为此,提出兼顾精度和实时性的轻量化路侧视角多目标检测算法.首先,以嵌入通道域注意力机制的倒残差网络结构代替单阶段检测算法特征提取网络作为网络骨干部分,利用深度可分离卷积降低特征提取网络参数量;其次,采用空间金字塔池化(spatial pyramid pooling,SPP)处理深层网络输出特征图,选取轻量化后骨干网络不同深度特征图的输出,利用路径聚合网络(path aggregation network,PANet)融合深层语义信息与浅层表观信息构成检测模型颈部;最后,在检测模型头部设置3种不同特征图大小的网络输出,使同一图像信息不同尺寸目标在适宜网络深度进行目标信息回归,提出轻量化路侧视角多目标检测算法M3-YOLOv4.实验结果表明,M3-YOLOv4在数据集RS-UA表现的mAP值为0.906,相较YOLOv4的mAP值下降1.1%,M3-YOLOv4模型参数量缩减为YOLOv4的10%,同平台下模型前向推理速度也具备明显优势.

    Abstract:

    Facing the detection requirements of multi category and variable scale vehicles in the road traffic scene, how to effectively construct structured data with low computational power to achieve beyond sight distance perception, and overcome the limitation of single vehicle sight distance is one of the important problems to be solved in the field of autonomous vehicle environment perception technology. In this paper, we propose a lightweight roadside perspective based multi object detection algorithm that balances accuracy and real-time performance. First, a reverse residual network structure embedded in the channel domain attention mechanism is used as the backbone of the network, replacing the single stage detection algorithm feature extraction network with a deep separable convolution to reduce the number of feature extraction network parameters. Second, spatial pyramid pooling(SPP) is used to process the output feature map of deep networks, then we select maps of different depth feature in the lightweight backbone network to output, and use the path aggregation network(PANet) to fuse deep semantic information and shallow superficial information to form the neck of the detection model. Finally, at appropriate network depth, three different network outputs of feature map sizes are set at the head of the detection model to regress the target information of different sizes of targets in the same image. A lightweight detection model M3-YOLOv4 is established. The experimental results show that the mAP of M3-YOLOv4 on RS-UA dataset is 0.906, which performs 1.1% decrease compared to the YOLOv4. The parameter quantity of the M3-YOLOv4 model is reduced to 10% of the YOLOv4, and the forward inference speed of the model on the same platform also shows significant advantages.

    参考文献
    相似文献
    引证文献
引用本文

金立生,张舜然,郭柏苍,等.基于改进YOLOv4的轻量化路侧视角多目标检测算法[J].控制与决策,2024,39(9):2885-2893

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-07
  • 出版日期: 2024-09-20
文章二维码