基于物理信息神经网络的随机系统演化分析
CSTR:
作者:
作者单位:

1. 扬州大学 信息工程学院,江苏 扬州 225127;2. 南京航空航天大学 航天学院,南京 211106

作者简介:

通讯作者:

E-mail: stdio@yzu.edu.cn.

中图分类号:

TP273

基金项目:

江苏省自然科学基金青年项目(BK20230560);国家自然科学基金项目(62303400,52272369).


Evolutionary analysis of stochastic systems based on physical information neural networks
Author:
Affiliation:

1. College of Information Engineering,Yangzhou University,Yangzhou 225127,China;2. College of Astronautics, Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一个概率深度学习框架,通过基于物理信息的神经网络对非线性微分系统中的不确定性进行量化和演化分析.算法使用潜在变量模型(即噪声/随机变量模型)构建系统状态的概率表示,并将偏微分方程描述的物理定律引入训练过程中,建立约束关系,为基于小样本数据集的训练提供一种有效的机制.所提出的概率物理学信息神经网络算法能够提供一种灵活的框架,表征由输入中的随机性或观测中的噪声引起的物理系统输出的不确定性,避免重复采样昂贵的实验或数值模拟器的需要.最后,通过包含随机变量的非线性系统示例对所提出算法进行验证,以表明算法的有效性.

    Abstract:

    This study presents a probabilistic deep learning framework that analyzes the uncertainty in nonlinear differential systems using a physics-informed neural network. The framework utilizes a latent variable model(i.e. noise/random variable model), to create a probability-based model of the system state. Physical laws that are described using partial differential equations are incorporated into the training process to establish constraint relationships, which provides an effective way to train using small samples. The proposed probabilistic physics information neural network (PPINN) algorithm provides a flexible framework, representing the uncertainty of the physical system output caused by the randomness in the input or the noise in the observation, which helps avoid the high costs associated with repeated sampling or expensive experiments. Finally, the effectiveness of the proposed algorithm is demonstrated through some nonlinear system examples containing random variables.

    参考文献
    相似文献
    引证文献
引用本文

曹瑞,裔扬,刘燕斌.基于物理信息神经网络的随机系统演化分析[J].控制与决策,2024,39(9):3013-3022

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-07
  • 出版日期: 2024-09-20
文章二维码