一种基于互信息度量的时序数据因果发现方法
CSTR:
作者:
作者单位:

国防科技大学 信息通信学院,武汉 430019

作者简介:

通讯作者:

E-mail: lu_yunjun@hotmail.com.

中图分类号:

TP181

基金项目:

“十四五”装备预研项目(315057206).


A causal discovery method for time series data based on mutual information measurement
Author:
Affiliation:

College of Information and Communication,National University of Defense Technology,Wuhan 430019,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在时序数据因果关系发现研究中,传统算法针对时间窗口内时序数据之间的因果关系进行分析,存在因果关系识别准确率受限、算法复杂度较高等问题.为解决该问题,首先对概要因果图、因果概要互信息和条件因果概要互信息进行定义,在此基础上推导出基于因果互信息的时序变量定向规则,而后区分是否存在混杂因子,结合PC(Peter and Clark)和FCI(fast causal inference)算法分别提出改进的PCSMI(Peter and Clark summary mutual information)和FCISMI(fast causal inference summary mutual information)算法.实验结果表明改进后算法能够在低复杂度条件下有效提升时序数据因果发现的准确率.

    Abstract:

    In the research on causal discovery of time series data, the traditional algorithm analyse the causal relationship between time series data in the time window, which has problems such as limited causality recognition accuracy and high algorithm complexity. In order to solve this problem, this paper first defines the summary causal diagram, causal summary mutual information and conditional causal summary mutual information, derives the temporal series variable orientation rule based on causal mutual information, and then distinguishes whether there are confounding factors, and proposes improved Peter and Clark summary mutual information(PCSMI) and fast causal inference summary mutual information(FCISMI) algorithms combined with Peter and Clark(PC) and fast causal inference(FCI) algorithms, respectively. Experimental results show that the improved algorithm can effectively improve the accuracy of causal discovery of time series data under low complexity conditions.

    参考文献
    相似文献
    引证文献
引用本文

李德志,鲁云军,吴健平,等.一种基于互信息度量的时序数据因果发现方法[J].控制与决策,2024,39(9):3151-3159

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-07
  • 出版日期: 2024-09-20
文章二维码