﻿ 基于滑模自抗扰的智能车路径跟踪控制
 控制与决策  2019, Vol. 34 Issue (10): 2150-2156 0

### 引用本文 [复制中英文]

[复制中文]
WU Yan, WANG Li-fang, LI Fang. Intelligent vehicle path following control based on sliding mode active disturbance rejection control[J]. Control and Decision, 2019, 34(10): 2150-2156. DOI: 10.13195/j.kzyjc.2018.017.
[复制英文]

### 文章历史

1. 中国科学院 电力电子与电气驱动重点实验室, 北京 100190;
2. 中国科学院 电工研究所, 北京 100190;
3. 中国科学院大学 电子电气与通信工程学院, 北京 100049

Intelligent vehicle path following control based on sliding mode active disturbance rejection control
WU Yan 1,2,3, WANG Li-fang 1,2, LI Fang 1,2
1. Key Laboratory of Power Electronics and Electric Drives, Chinese Academy of Sciences, Beijing 100190, China;
2. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
3. School of Electronic Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: For the traditional path following control method based on precise mathematical models, it is difficult to adapt to the complex and changeable driving environment. A path following control method based on terminal sliding mode control and active disturbance rejection control is proposed. Firstly, the path following control is simplified by constructing a desired yaw angle function that satisfies the condition that the lateral displacement deviation converges zero when the actual yaw angle of the vehicle converges the desired value. Then, the unmodelled dynamics of the system are estimated in real time by the extended state observer, and the non-singular terminal sliding mode is adopted to design the nonlinear error feedback control law to achieve fast and accurate yaw angle tracking control. Simulation results show that the designed controller can ensure that the vehicle runs stably while following the desired path quickly and accurately.
Keywords: intelligent vehicle    path following control    active disturbance rejection control    terminal sliding mode control    extended state observer
0 引言

1 车辆运动模型 1.1 车辆模型

 图 1 二自由度车辆平面运动模型

 (1)

 (2)

 (3)
1.2 智能车路径跟踪问题

 (4)

 (5)

 (6)

Ye > 0并且0 < c0 < π时, 可得

Ye < 0并且0 < c0 < π时, 可得

Ye = 0并且0 < c0 < π时, 可以得到.

z = 0, 可以得到期望的偏航角φd = – c0tanh (c1Ye) – β+φref, 只要控制φφd, 就能够保证Ye收敛到零.这里令x1 = φ, x2 = wr, 得到如下控制系统:

 (7)

2 滑模自抗扰控制器设计 2.1 扩张状态观测器设计

 (8)

 (9)

 (10)

2.2 非奇异终端滑模非线性误差反馈控制律设计

 (11)

 (12)

 (13)

, 可以得到等效控制分量

 (14)

 (15)

 (16)

2.3 控制器稳定性分析

 (17)

s≠0时, 因为pq为正奇数, 并且满足1 <, 所以有x2β-1≥0, 进而得到.由此可见, 位于滑模面s = 0以外的点都可以在有限时间内到达滑模面s, 从任意s≠0的初始状态总能在有限时间内收敛到零, 系统是全局稳定的.

3 仿真验证

3.1 不同控制器的控制性能比较

 图 2 不同控制器的路径跟踪仿真结果
3.2 控制系统对速度的鲁棒性

 图 3 车辆在不同车速下的仿真结果
3.3 控制系统对路面附着条件的鲁棒性

 图 4 车辆在不同路面附着条件下的仿真结果

4 结论

 [1] 李骏, 邱少波, 李红建, 等. 智能城市的智能汽车[J]. 中国科学:信息科学, 2016, 45(5): 551-559. (Li J, Qiu S B, Li H J, et al. Smart vehicle for smart city[J]. Scientia Sinica Informationis, 2016, 45(5): 551-559.) [2] Hamid Gharavi, Venkatesh Prassad K, Petros Ioannou. Scanning advanced automobile technology[J]. Proc of the IEEE, 2007, 95(2): 328-333. DOI:10.1109/JPROC.2006.888380 [3] Akyuz I H, Yolacan E, Ertunc H M, et al. PID and state feedback control of a single-link flexible joint robot manipulator[C]. 2011 IEEE Int Conf on Mechatronics. Istanbul, 2011: 409-414. [4] 段建民, 杨晨, 石慧. 基于Pure Pursuit算法的智能车路径跟踪[J]. 北京工业大学学报, 2016, 42(9): 1301-1306. (Duan J M, Yang C, Shi H. Path tracking based on Pure Pursuit algorithm for intelligent vehicles[J]. J of Beijing University of Technology, 2016, 42(9): 1301-1306.) [5] Hu Chuan, Wang Rongrong, Yan Fengjun. Integral sliding mode-based composite nonlinear feedback control for path following of four-wheel independently actuated autonomous vehicles[J]. IEEE Trans on Transportation Electrification, 2016, 2(2): 221-230. DOI:10.1109/TTE.2016.2537046 [6] Chen Changfang, Jia Yingmin, Shu Minglei, et al. Hierarchical adaptive path-tracking control for autonomous vehicles[J]. IEEE Trans on Intelligent Transportation Systems, 2015, 16(5): 2900-2912. DOI:10.1109/TITS.2015.2426211 [7] Fitri Yakub, Yasuchika Mori. Autonomous ground vehicle of path following control through model predictive control with feed forward controller[C]. The 12th Int Symposium on Advanced Vehicle Control. Sappore, 2014: 1035-1040. [8] Huang P F, Yan J, Yuan J P, et al. Robust control of space robot for capturing objects using optimal control method[C]. Int Conf on Information Acquisition. Piscat-away: IEEE, 2007: 397-402. [9] Soudbakhsh D, Eskandarian A. A collision avoidance steering controller using linear quadratic regulator[C]. SAE 2010 World Congress & Exhibition. Detrolt: United States SAE, 2010-01-0459. [10] Falcon P, Borreli F, Asgari J, et al. Predictive active steering control for autonomous vehicle system[J]. IEEE Trans of Control Systems Technology, 2007, 15(3): 566-580. DOI:10.1109/TCST.2007.894653 [11] 张亮修, 吴光强, 郭晓晓. 自主车辆线性时变模型预测路径跟踪控制[J]. 同济大学学报:自然科学版, 2016, 44(10): 1595-1603. (Zhang L X, Wu G Q, Guo X X. Path tracking using linear time varying model predictive control for autonomous vehicle[J]. J of Tongji University: Natural Science, 2016, 44(10): 1595-1603.) [12] Jie Ji, Amir Khajepour, Wael William Melek, et al. Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints[J]. IEEE Trans on Vehicular Technology, 2017, 66(2): 952-964. DOI:10.1109/TVT.2016.2555853 [13] Soudbakhsh D, Eskandarian A. Comparison of linear and non-linear controllers for active steering of vehicles in evasive maneuvers[J]. Proc of the Institution of Mechanical Engineers, Part I: J of Systems and Control Engineering, 2012, 226(12): 215-232. [14] Xia Yuanqing, Pu Fan, Li Shengfei, et al. Lateral path tracking control of autonomous land vehicle based on ADRC and differential flatness[J]. IEEE Trans on Industrial Electronics, 2016, 63(5): 3091-3099. DOI:10.1109/TIE.2016.2531021 [15] 王健, 赵又群, 杨君, 等. 避让工况下的路径跟踪线性自抗扰控制[J]. 哈尔滨工程大学学报, 2015, 36(10): 1361-1364. (Wang J, Zhao Y Q, Yang J, et al. Design of a linear active disturbance rejection controller for collision free path planning[J]. J of Harbin Engineering University, 2015, 36(10): 1361-1364.) [16] 于少伟. 智能车辆自动超车控制仿真研究[J]. 系统仿真学报, 2009, 21(8): 2365-2368. (Yu S W. Research on intelligent vehicle autonomous overtaking control and simulation[J]. J of System Simulation, 2009, 21(8): 2365-2368.) [17] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23. (Han J Q. Auto-disturbances-rejection controller and it's applications[J]. Control and Decision, 1998, 13(1): 19-23. DOI:10.3321/j.issn:1001-0920.1998.01.005) [18] 韩京清. 自抗扰控制技术—–估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008: 243-288. (Han J Q. Active disturbance rejection control technique — The technique for estimating and compensating the uncertaintics[M]. Beijing: National Defense Industry Press, 2008: 243-288.) [19] 高志强. 自抗扰控制思想探究[J]. 控制理论与应用, 2013, 30(12): 1498-1510. (Gao Z Q. On the foundation of active disturbance rejection control[J]. Control Theory & Applications, 2013, 30(12): 1498-1510. DOI:10.7641/CTA.2013.31087) [20] 龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制[M]. 北京: 北京理工大学出版社, 2014: 22-35. (Gong J W, Jiang Y, Xu W. Model predictive control for self-driving vehicles[M]. Beijing: Beijing Institute of Technology Press, 2014: 22-35.) [21] Gillespie T. Fundamentals of vehicle dynamics[M]. Warrendale: Society of Automotive Engineers, 1992: 198-208. [22] Moustapha Doumiati, Alessandro Correa Victorino, Ali Charara, et al. Onboard real-time estimation of vehicle lateral tire-road forces and sideslip angle[J]. IEEE / ASME Trans on Mechatronics, 2011, 16(4): 601-614. DOI:10.1109/TMECH.2010.2048118 [23] Zhao Lin-hui, Liu Zhiyuan, Chen Hong. Design of a nonlinear observer for vehicle velocity estimation and experiments[J]. IEEE Trans on Control Systems Technology, 2011, 19(3): 664-672. DOI:10.1109/TCST.2010.2043104 [24] Falcon P, Eric Tseng H, Borrelli F, et al. MPC-based yaw and lateral stabilization via active front steering and braking[J]. Vehicle System Dynamics, 2008, 46(SI): 611-628.