﻿ 考虑自动驾驶仪动态特性的三维双环制导律
 控制与决策  2019, Vol. 34 Issue (10): 2185-2190 0

引用本文 [复制中英文]

[复制中文]
LIU Bo-jun, HOU Ming-shan, YU Ying. Three-dimensional dual-loop guidance law with autopilot dynamics[J]. Control and Decision, 2019, 34(10): 2185-2190. DOI: 10.13195/j.kzyjc.2018.0218.
[复制英文]

文章历史

Three-dimensional dual-loop guidance law with autopilot dynamics
LIU Bo-jun , HOU Ming-shan , YU Ying
School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
Abstract: A novel three-dimensional dual-loop guidance law with missile autopilot dynamics based on nonlinear disturbance observers and command filters is proposed. The guidance system is decoupled into an outer loop system and an inner loop system. The outer loop controller generates a virtual guidance law, which makes the normal relative velocities between missile and target in spherical coordinates converge to zero. The inner loop controller generates a real guidance law, which makes the missile autopilot track the virtual guidance law from the outer loop fast. Since a command filter in the outer loop calculates both the first and the second derivatives of the virtual guidance law, the whole guidance design procedure of the three-order system is accomplished just in two steps. Simulation results for a missile intercepting a high speed and high maneuvering target show that the proposed guidance law compensates the influence of autopilot dynamics effectively, has strong robustness of resistance against target maneuver, and possesses high guidance precision.
Keywords: guidance law    autopilot dynamics    dual-loop control    disturbance observer    command filter
0 引言

1 拦截问题数学模型

 图 1 弹目相对运动模型示意
 (1)
 (2)
 (3)

.其中: Vr为弹目相对接近速率, VθVϕ为弹目法向相对速率.在实际制导过程中, 可通过调节导弹加速度来控制VθVϕ, 而Vr是不可控的, 但始终有Vr < 0.本文的制导律设计目的是使弹目法向相对速率VθVϕ收敛到零.

 (4)
 (5)

 (6)

.根据式(4) ~ (6), 可将非线性制导系统记为

 (7)
 (8)
 (9)

 (10)

 (11)
 (12)

2 双环制导律设计

 图 2 双环制导系统结构框图
2.1 外环系统控制器设计

 (13)
 (14)

 (15)

 (16)

 (17)

z对时间求导, 并将式(13)、(14)和(16)代入, 得

 (18)

 (19)

 (20)

 (21)

V1对时间求导, 并将式(17) ~ (20)代入, 得

 (22)

 (23)
 (24)

 (25)

2.2 内环系统控制器设计

 (26)

 (27)

 (28)

 (29)

s对时间求导, 并将式(8)、(14)和(28)代入, 得

 (30)

 (31)

 (32)

 (33)

V2对时间求导, 并将式(30) ~ (32)代入, 得

 (34)

 (35)

 (36)

2.3 闭环系统稳定性分析

 (37)

 (38)

 (39)

 (40)

 (41)

 (42)

3 仿真与分析

 (43)

 图 3 弹目法向相对速率Vθ变化曲线
 图 4 弹目法向相对速率Vϕ变化曲线
 图 5 制导指令uθ变化曲线
 图 6 制导指令uϕ变化曲线

4 结论

 [1] Zarchan P. Tactical and strategic missile guidance[M]. 6th ed. Reston: AIAA, 2012: 165-171. [2] Yang C D, Chen H Y. Nonlinear H∞ robust guidance law for homing missiles[J]. J of Guidance, Control, and Dynamics, 1998, 21(6): 882-890. DOI:10.2514/2.4321 [3] Zhou D, Mu C, Shen T. Robust guidance law with L2 gain performance[J]. Trans of the Japan Society for Aeronautical and Space Sciences, 2005, 44(144): 82-88. [4] Lechevin N, Rabbath C A. Lyapunov-based nonlinear missile guidance[J]. J of Guidance, Control, and Dynamics, 2004, 27(6): 1096-1102. DOI:10.2514/1.8629 [5] Ye J, Lei H, Xue D, et al. Nonlinear differential geometric guidance for maneuvering target[J]. J of Systems Engineering and Electronics, 2012, 23(5): 752-760. DOI:10.1109/JSEE.2012.00092 [6] Zhou D, Mu C, Xu W. Adaptive sliding-mode guidance of a homing missile[J]. J of Guidance, Control, and Dynamics, 1999, 22(4): 589-594. DOI:10.2514/2.4421 [7] Hexner G, Weiss H. Stochastic approach to optimal guidance with uncertain intercept time[J]. IEEE Trans on Aerospace and Electronic Systems, 2010, 46(4): 1804-1820. DOI:10.1109/TAES.2010.5595596 [8] Sun S, Zhou D, Hou W. A guidance law with finite time convergence accounting for autopilot lag[J]. Aerospace Science and Technology, 2013, 25(1): 132-137. DOI:10.1016/j.ast.2011.12.016 [9] Dongkyoung C, Jin Y C. Adaptive nonlinear guidance law considering control loop dynamics[J]. IEEE Trans on Aerospace and Electronic Systems, 2003, 39(4): 1134-1143. DOI:10.1109/TAES.2003.1261117 [10] Zhou D, Qu P, Sun S. A guidance law with terminal impact angle constraint accounting for missile autopilot[J]. J of Dynamic Systems, Measurement, and Control, 2013, 135(5): 051009-1. DOI:10.1115/1.4024202 [11] Du R, Meng K, Zhou D, et al. Design of three-dimensional nonlinear guidance law with bounded acceleration command[J]. Aerospace Science and Technology, 2015, 46: 168-175. DOI:10.1016/j.ast.2015.07.010 [12] Zhou D, Xu B. Adaptive dynamic surface guidance law with input saturation constraint and autopilot dynamics[J]. J of Guidance, Control, and Dynamics, 2016, 39(5): 1155-1162. DOI:10.2514/1.G001236 [13] Shi L, Yan X, Tang S. Prescribed performance interceptor guidance with terminal line of sight angle constraint accounting for missile autopilot lag[J]. Aerospace Science and Technology, 2017, 69: 171-180. DOI:10.1016/j.ast.2017.06.022 [14] He S, Wang W, Lin D. Adaptive backstepping impact angle guidance law accounting for autopilot lag[J]. J of Aerospace Engineering, 2017, 30(3): 04016094-1. DOI:10.1061/(ASCE)AS.1943-5525.0000698 [15] He S, Wang W, Wang J. Adaptive backstepping impact angle control with autopilot dynamics and acceleration saturation consideration[J]. Int J of Robust and Nonlinear Control, 2017, 27(17): 3777-3793. [16] Yu J, Shi P, Dong W, et al. Observer and command-filter-based adaptive fuzzy output feedback control of uncertain nonlinear systems[J]. IEEE Trans on Industrial Electronics, 2015, 62(9): 5962-5970. DOI:10.1109/TIE.2015.2418317 [17] Hassan K. Nonlinear systems[M]. 3rd ed. Englewood Cliffs: Prentice Hall, 2002: 174-180.