﻿ 偏置动量卫星阻尼力矩作用下的姿态运动特性分析及控制方法
 控制与决策  2019, Vol. 34 Issue (10): 2263-2267 0

引用本文 [复制中英文]

[复制中文]
LIU Shan-wu, WANG Jun, RONG Jian-gang, ZHAO Yong-jia, CHEN Hong-yu. Analysis and control method of attitude motion characteristics under damping moment of bias-momentum satellite[J]. Control and Decision, 2019, 34(10): 2263-2267. DOI: 10.13195/j.kzyjc.2018.0223.
[复制英文]

文章历史

Analysis and control method of attitude motion characteristics under damping moment of bias-momentum satellite
LIU Shan-wu , WANG Jun , RONG Jian-gang , ZHAO Yong-jia , CHEN Hong-yu
Shanghai Engineering Center for Microsatellites, Shanghai 201003, China
Abstract: The attitude motion characteristic of the bias-momentum satellite at the rate damping stage is analyzed, and a method for selecting weak bias angular momentum is proposed based on time-domain analysis to improve the dynamic performance of roll-yaw convergence. Considering the multi-star launching mode, the limitation of the installation constraints leads to the serious deviation of the bias angular momentum from the normal direction of the orbit after the separation, therefore, an attitude control method based on weak bias angular momentum is proposed. The method can avoid the problem that the convergent time of the roll-yaw angle is longer due to the gyroscopic intertia of bias angular momentum. The simulation results show that the proposed method can effectively reduce the attitude acquisition time and is easy to be implemented in engineering.
Keywords: bias-momentum satellite    weak bias angular momentum    attitude acquisition    spinning momentum wheel    damping moment
0 引言

1 卫星动力学模型

 (1)

 (2)

ωo为卫星轨道角速度.

2 阻尼阶段姿态运动特性分析

2.1 滚动-偏航角收敛性分析

 (3)

 (4)

 (5)

 (6)

2.2 俯仰角运动特性分析

 (7)

t=0时, θ(0)=θ0, =ωy0, 求解式(7)可得

 (8)

2.3 弱偏置角动量的选取方法

 (9)

 (10)

 (11)

 (12)

 (13)

 (14)
3 基于弱偏置角动量的姿态控制方法

 图 1 传统控制方法

 图 2 基于弱偏置角动量的姿态控制方法

4 仿真分析

 图 3 传统姿态控制方法的角速度变化曲线
 图 4 传统姿态控制方法的欧拉角变化曲线
 图 5 基于弱偏置角动量姿态控制方法的角速度变化曲线
 图 6 基于弱偏置角动量姿态控制方法的欧拉角变化曲线
 图 7 基于弱偏置角动量姿态控制方法的偏置角动量变化曲线

5 结论

 [1] Findlay E J, de Ruiter A, Forbes J R, et al. Magnetic attitude control of a flexible satellite[J]. J of Guidance, Control, and Dynamics, 2013, 36(5): 1522-1526. DOI:10.2514/1.57300 [2] Moradi M, Menhaj M B, Ghasemi A. Attitude tracking control using an online identification and a linear quadratic regulator-based strategy in the presence of orbital eccentricity[J]. J of Aerospace Engineering, 2010, 25(1): 71-79. [3] Moradi M, Esmaelzadeh R, Ghasemi A. Adjustable adaptive fuzzy attitude control using nonlinear SISO structure of satellite dynamics[J]. Trans of the Japan Society for Aeronautical and Space Sciences, 2012, 55(5): 265-273. DOI:10.2322/tjsass.55.265 [4] Esmailzadeh R, Arefkhani H, Davoodi S. Active control and attitude stabilization of a momentum-biased satellite without yaw measurements[C]. The 19th Iranian Conf on Electrical Engineering. Tehran: IEEE, 2011: 1-6. [5] Zanchettin A M, Calloni A, Lovera M. Robust magnetic attitude control of satellites[J]. IEEE/ASME Trans on Mechatronics, 2013, 18(4): 1259-1268. DOI:10.1109/TMECH.2013.2259843 [6] Han K, Wang H, Jin Z H. Magnetometer-only linear attitude estimation for Bias momentum pico-satellite[J]. J of Zhejiang University: Science A, 2010, 11(6): 455-464. DOI:10.1631/jzus.A0900725 [7] Mukhayadi M, Madina Rosza, Renner Udo. Attitude control of bias momentum micro satellite using magnetic and gravity gradient torque[C]. IEEE Int Conf on Aerospace Electronics and Remote Sensing Technology. Washington DC: IEEE, 2014: 132-136. [8] 向甜, 王昊, 蒙涛, 等. 基于纯磁控的皮卫星姿态恢复[J]. 浙江大学学报:工学版, 2013, 47(5): 843-852. (Xiang T, Wang H, Meng T, et al. Attitude recovery of pico-satellites based on fully magnetic coils control algorithm[J]. J of Zhejiang University: Engineering Science, 2013, 47(5): 843-852.) [9] Ono G, Tsuda Y, Akatsuka K, et al. Generalized attitude model for momentum-biased solar sail spacecraft[J]. J of Guidance, Control, and Dynamics, 2016, 39(7): 1491-1500. DOI:10.2514/1.G001750 [10] Luo W, Zhou B. Magnetic attitude control of bias momentum spacecraft by bounded linear feedback[J]. Aerospce Science and Technology, 2017, 70: 419-427. DOI:10.1016/j.ast.2017.07.047 [11] De Ruiter A H J. Magnetic control of dual-spin and bias-momentum spacecraft[J]. J of Guidance, Control, and Dynamic, 2012, 35(4): 1158-1168. DOI:10.2514/1.55869 [12] Stickler A C. A magnetic control system for attitude acquisition[R]. New York: Ithaca Inc, 1972: 1-13. [13] 屠善澄. 卫星姿态动力学与控制[M]. 北京: 中国宇航出版社, 2009: 284-287. (Tu S C. Satellite attitude dynamics and control[M]. Beijing: China Aerospace Press, 2009: 284-287.) [14] 章仁为. 卫星轨道姿态动力学与控制[M]. 北京: 北京航空航天大学出版社, 2006: 149-155. (Zhang R W. Satellite orbit attitude dynamics and control[M]. Beijing: Beihang University Press, 2006: 149-155.)