基于强化学习的储层神经元筛选优化方法
CSTR:
作者:
作者单位:

1. 西安科技大学 通信与信息工程学院,西安 710054;2. 西安科技大学 计算机科学与技术学院,西安 710054;3. 墨西哥国立理工学院高级研究中心 控制科学与工程系,墨西哥 07360

作者简介:

通讯作者:

E-mail: 2565986657@qq.com.

中图分类号:

TP183

基金项目:

陕西省自然科学基础研究计划陕煤联合基金项目(2019JLZ-08);陕西省自然科学基础研究计划项目(2020JM-522,2021JM-396);国家重点研发计划项目(2018YFC1900800-5,2018YFC1900801).


Optimization method for reservoir neuron selection based on reinforcement learning
Author:
Affiliation:

1. College of Communication and Information Engineering,Xián University of Science and Technology,Xián 710054,China;2. College of Computer Science and Technology,Xián University of Science and Technology,Xián 710054,China;3. Department of Control Automatic,Center for Research and Advanced Studies of the National Polytechnic Institute,Mexico City 07360,Mexico

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随机生成的回声状态网络动态储层存在大量冗余神经元,导致网络高维状态空间矩阵产生共线性问题而影响网络预测性能.为解决该问题,提出一种基于强化学习的储层神经元筛选优化方法(SC-ESN),其实质是基于集成学习的思想构建多个初始储备池,利用互信息度量储层池中每个神经元对网络性能的贡献,并结合强化学习的决策机制筛选出对网络输出有效的神经元,进而达到优化网络结构、提高网络预测性能的目的.基于人工数据集和实际数据集的实验表明,所提出的SC-ESN模型与其他预测模型相比,该模型在保证预测性能的前提下具有最小结构.

    Abstract:

    The dynamic reservoir of the randomly generated echo state network(ESN) contains a significant amount of redundant neurons, which leads to collinearity in the high-dimensional state space matrix of the network and subsequently affects its prediction performance. In order to address this issue, this paper proposes a self-organizing choice ESN(SC-ESN) structure optimization model based on reinforcement learning. The essence of the SC-ESN model lies in its construction of multiple initial reserve pools, which is founded upon the idea of ensemble learning.The contribution of each neuron in the reservoir pool to the network performance is then measured using mutual information, and the decision mechanism of reinforcement learning is utilized to screen out effective neurons for network output. The purpose of this optimization is to improve the network's structure and prediction performance. Results of experiments conducted on both manual and actual datasets show that the SC-ESN model proposed has a more streamlined structure while still maintaining superior prediction performance compared to other prediction models.

    参考文献
    相似文献
    引证文献
引用本文

郭伟,姚欢,张昭昭,等.基于强化学习的储层神经元筛选优化方法[J].控制与决策,2024,39(9):2876-2884

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-07
  • 出版日期: 2024-09-20
文章二维码