FCM-YOLO:一种基于特征增强和多尺度融合的PCB缺陷检测方法
CSTR:
作者:
作者单位:

1. 南京信息工程大学 江苏省大气环境与装备技术协同创新中心,南京 210044;2. 南京信息工程大学 自动化学院,南京 210044

作者简介:

通讯作者:

E-mail: yguo@nuist.edu.cn.

中图分类号:

TP391.41;TN41

基金项目:

国家自然科学基金项目(61971229).


FCM-YOLO: A PCB defect detection method based on feature enhancement and multi-scale fusion
Author:
Affiliation:

1. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET),Nanjing University of Information Science & Technology,Nanjing 210044,China;2. Institute of Automation,Nanjing University of Information Science & Technology,Nanjing 210044,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对PCB缺陷检测任务中存在的目标与背景相混淆、缺陷目标较小不易识别等问题,提出一种基于特征增强和多尺度融合的PCB缺陷检测方法FCM-YOLO.所提出方法以YOLOv5s为基础,首先在特征提取网络中引入由空间到深度层和非跨步卷积层的组合,构建特征重提取模块,以减少信息丢失,保留小目标特征信息;然后,在特征提取网络的最深层引入上下文注意力模块,通过学习上下文信息,使用可变形卷积提取小目标特征,以此增强对目标与背景的区分能力,从而减少漏检情况;最后,在特征融合网络中引入多尺度感受野增强模块,通过多分支结构加强特征信息间的相关性,增强特征的语义表示.在PCB缺陷数据集和GC10-DET数据集上对不同算法进行对比实验,实验结果表明,FCM-YOLO能够更加精确地识别缺陷目标,相比改进前的YOLOv5s算法,所提出算法在这两个数据集上的检测精度分别提高4.7%和3.7%.

    Abstract:

    In response to the challenges in PCB(printed circuit board) defect detection tasks, such as confusion between targets and backgrounds and difficulty in identifying small defective targets, a PCB defect detection method using feature context enhancement and multi-scale fusion YOLO(FCM-YOLO) is proposed. Firstly, based on the YOLOv5s, the method introduces a feature re-extraction module in the feature extraction network, incorporating a combination of spatial-to-depth layers and non-stride convolution layers to reduce information loss and retain features of small targets. Then, a context self attention module is introduced at the deepest layer of the feature extraction network, leveraging deformable convolution to extract features of small targets by learning contextual information, thereby enhancing the discriminative ability between targets and backgrounds and reducing false negatives. Finally, a multi-scale receptive field enhancement block is introduced in the feature fusion network, strengthening the correlation between feature information through a multi-branch structure and enhancing the semantic representation of features. Experimental results comparisons on PCB defect datasets and GC10-DET dataset demonstrate the FCM-YOLO can more accurately identify defective targets. In comparison with the improved YOLOv5s algorithm, the proposed method achieves a detection accuracy improvement of 4.7% and 3.7% on these two datasets, respectively.

    参考文献
    相似文献
    引证文献
引用本文

严舒,郭颖,黄骏. FCM-YOLO:一种基于特征增强和多尺度融合的PCB缺陷检测方法[J].控制与决策,2024,39(10):3181-3189

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-29
  • 出版日期: 2024-10-20
文章二维码