从分解视角出发: 基于多元统计方法的工业时序建模与过程监测综述
CSTR:
作者:
作者单位:

浙江大学 控制科学与工程学院,杭州 310027

作者简介:

通讯作者:

E-mail: chhzhao@zju.edu.cn.

中图分类号:

TP277

基金项目:

国家自然科学基金杰出青年基金项目(62125306);浙江省“尖兵”“领雁”研发攻关计划项目(2024C 01163).


From the decomposition perspective: A survey of industrial time series modeling and process monitoring based on multivariate statistical methods
Author:
Affiliation:

College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    数据驱动的过程监测是确保工业过程安全运行的重要手段.工业数据大多以时间序列的形式存在.由于工艺复杂性、噪声干扰等影响,工业时间序列往往呈现出低质量、强动态和非平稳等特性,给监测模型的建立带来了困难.尽管研究学者针对不同特性分别提出了相关方法,但这些方法之间的内在关联几乎没有被挖掘.鉴于此,揭示这些方法所蕴含的共性出发点:在工业过程中,仅知晓故障存在与否往往难以满足实际需求,需要对复杂时间序列特性进行深度分解,以实现对过程状态多方面的精细感知;从一种分解的视角出发,综述现有多元统计方法如何针对时间序列各类复杂特性进行建模,通过将复杂的时间序列分解成多个具有实际物理意义的成分,提供可解释的监测结果;总结提炼不同建模方法的核心分解思想并进行对比,并针对各类方法梳理监测统计量的构造与含义;最后,对工业时间序列分解建模工作进行总结和展望,提出未来研究方向.

    Abstract:

    Data-driven process monitoring is a crucial means to ensure the safe operation of industrial processes. Most industrial data exists in the form of time series. Due to the complexity of mechanism, noise interference, and other factors, industrial time series often exhibit characteristics such as low quality, strong dynamics, and nonstationary characteristics, which pose challenges to the establishment of monitoring models. Although researchers have proposed relevant methods addressing different characteristics, the intrinsic connections between these methods have hardly been explored. This paper reveals, for the first time, the common motivation underlying these methods: in industrial processes, merely knowing the presence or absence of a fault often fails to meet actual needs. It is necessary to deeply decompose the complex characteristics of time series to achieve a comprehensive perception of the process state. Innovatively adopting a decomposition perspective, this paper reviews existing multivariate statistical methods for modeling various complex characteristics of time series. By decomposing complex time series into multiple components with practical physical significance, the paper provides interpretable monitoring results. It summarizes and compares the core decomposition ideas of different modeling methods. Subsequently, the paper elucidates the construction and implications of monitoring statistics for various methods. Finally, this paper summarizes and forecasts the work on decomposing and modeling industrial time series, proposing future research directions.

    参考文献
    相似文献
    引证文献
引用本文

赵春晖,陈旭.从分解视角出发: 基于多元统计方法的工业时序建模与过程监测综述[J].控制与决策,2024,39(11):3521-3546

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-20
  • 出版日期: 2024-11-20
文章二维码