多车道交叉口交通信号与混合车辆轨迹协同优化框架
CSTR:
作者:
作者单位:

东北大学秦皇岛分校 控制工程学院,河北 秦皇岛 066004

作者简介:

通讯作者:

E-mail: wlfkz@qq.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61573077,U1808205);河北省自然科学基金项目(F2022501005);国家留学基金项目(202308130119).


Integrated optimization framework for traffic signal and mixed vehicle trajectory at multi-lane intersection
Author:
Affiliation:

School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    智能网联自动驾驶技术逐渐成熟,为交叉口日益严重的交通拥堵和能源浪费问题提供了新的解决方案.将交通信号控制与车辆轨迹优化相结合,可以有效提高通行效率和燃油效率.因此,针对混合交通流环境下的多车道交叉口,提出一种交通信号与车辆轨迹协同优化控制框架.首先,考虑到信号相序的动态变化和车辆变道的原因及其持续性影响,对车辆的纵向跟驰模型和横向变道模型进行改进;其次,以最小化车辆通行延迟和油耗为目标,提出交通信号与车辆轨迹协同优化控制方法,在交通信号的自适应控制下平滑车辆轨迹;此外,设计一种协同优化控制算法,以较低的计算量保证优化效率;最后,在不同的交通情境下进行数值仿真,结果表明所提出框架能够同时提高通行效率和燃油效率.相比交通信号或车辆轨迹的单独优化框架,所提出协同优化框架在通行延迟、油耗、安全性能和驾驶舒适度等方面均能产生更多的增益.

    Abstract:

    The maturing intelligent connected autonomous driving technology presents a novel solution to the increasing traffic congestion and energy wastage issues at the signalized intersection. Integrating traffic signal control with vehicle trajectory optimization holds significant promise in enhancing traffic throughput and fuel efficiency. Therefore, addressing the multi-lane signalized intersection in mixed traffic flow environments, this paper proposes an integrated optimization framework for traffic signal and vehicle trajectory. Initially, improvements are made to the longitudinal car-following model and lateral lane-change model, considering the dynamic changes in signal sequencing and the reasons behind vehicle lane-changing, as well as the persistent impact of vehicle lane-changing processes. Subsequently, an integrated optimization method is established with the goal of minimizing vehicle travel delays and fuel consumption, which achieves adaptive traffic signal control and smooth vehicle trajectory. Furthermore, an integrated optimization control algorithm is devised to ensure minimal computational overhead while guaranteeing optimizing efficiency. Finally, numerical simulations conducted in various traffic scenarios indicate that the proposed framework significantly improves both traffic throughput and fuel efficiency. Compared to individual optimization frameworks for traffic signal or vehicle trajectory, the proposed framework demonstrates notable additional benefits in terms of travel delay, fuel consumption, safety performance and driving comfort.

    参考文献
    相似文献
    引证文献
引用本文

王立夫,刘一铄,孔芝,等.多车道交叉口交通信号与混合车辆轨迹协同优化框架[J].控制与决策,2024,39(11):3567-3576

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-20
  • 出版日期: 2024-11-20
文章二维码