空洞卷积并行注意力机制和纹理对比度增强的红外与可见光图像融合
CSTR:
作者:
作者单位:

1. 兰州交通大学 电子与信息工程学院,兰州 730070;2. 兰州大学 信息科学与工程学院,兰州 730000

作者简介:

通讯作者:

E-mail: 46891771@qq.com.

中图分类号:

TP391.41

基金项目:

甘肃省科技计划项目(22JR5RA360);国家自然科学基金项目(62061023);甘肃省杰出青年基金项目(21JR7RA345).


A dilated convolution parallel attention mechanism and texture contrast enhancement for infrared and visible image fusion
Author:
Affiliation:

1. School of Electronic & Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;2. School of Information Science & Engineering,Lanzhou University,Lanzhou 730000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在机器视觉中,视频监控的红外与可见光图像融合可以帮助机器更有效地识别目标和环境.针对现有视频监控的红外和可见光图像算法中存在人物细节提取不充分、目标物体轮廓模糊等问题,提出空洞卷积并行注意力机制和纹理对比度增强的红外与可见光图像融合.首先,融合网络采用多尺度密集连接和空洞卷积并行注意力机制构建局部-全局并行网络提取图像中的梯度信息和强度信息;然后,利用Scharr滤波器和深度可分离卷积构建纹理对比度增强网络,增强融合特征的对比度和纹理细节;最后,利用一种信息交换流网络设计分解网络,由于分解图像的质量直接取决于融合结果,分解过程可以使融合图像包含更多的场景信息.通过与其他8种具有代表性的图像融合方法对比,所提出方法的7项客观评价指标有5%sim62%的提升,表明所提出方法不仅能够充分提取源图像信息,获得纹理细节更清晰、对比度更好的融合结果,而且可以有效解决因源图像分辨率差异大而阻碍的多光谱遥感分析、军事侦察等实际应用.

    Abstract:

    In the realm of machine vision, the fusion of infrared and visible images for video surveillance enhances the ability of machines to recognize targets and environments with greater effectiveness. Aiming at the problems of insufficient character detail extraction and blurred target object contours in existing infrared and visible light image algorithms for video surveillance, a parallel attention mechanism with dilated convolution and texture contrast enhancement for infrared and visible image fusion are proposed. Firstly, the fusion network uses multi-scale dense connection and dilated convolution parallel attention mechanism to extract gradient and intensity information from the images. Then, the texture contrast-enhanced network is constructed using Scharr filters and depthwise separable convolutions to enhance the contrast and texture details of fused features. Finally, the decomposition network is designed with an information exchange flow network. Since the quality of the decomposed images depends directly on the fusion result, the decomposition process can enable the fused image to contain more scene information. Compared with other eight representative image fusion methods, the seven objective evaluation indexes of this paper's method have an improvement of 5%sim62%, which indicates that the proposed method not only can fully extract source image information and obtain fusion results with clearer texture details and better contrast, but also effectively solves the problem of multispectral remote sensing analysis, military reconnaissance, and other practical applications hindered by the large difference in resolution between source images.

    参考文献
    相似文献
    引证文献
引用本文

邸敬,任莉,刘冀钊,等.空洞卷积并行注意力机制和纹理对比度增强的红外与可见光图像融合[J].控制与决策,2024,39(11):3586-3596

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-20
  • 出版日期: 2024-11-20
文章二维码