基于核模糊聚类的多模型LSSVM回归建模
DOI:
CSTR:
作者:
作者单位:

上海交通大学自动化系 200240

作者简介:

李卫

通讯作者:

中图分类号:

TP18

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对大规模数据采用单模型回归存在精度差和计算量较大的问题,提出一种基于核模糊聚类的多模型最小二乘支持向量回归建模方法.该方法首先使用基于条件正定核的模糊C 均值聚类算法对数据集做出聚类划分;然后针对每个聚类做最小二乘支持向量回归估计;同时根据每个聚类内数据分布的特征,给出了一种简单的核参数选择方法.利用数值仿真实验进行非线性函数估计,实验结果表明了所提出的方法具有良好的精度和泛化能力.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

李卫,杨煜普,王娜.基于核模糊聚类的多模型LSSVM回归建模[J].控制与决策,2008,23(5):560-562

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2007-01-16
  • 最后修改日期:2007-05-23
  • 录用日期:
  • 在线发布日期: 2008-05-20
  • 出版日期:
文章二维码