基于粗糙集约简的特征选择神经网络集成技术
DOI:
CSTR:
作者:
作者单位:

1. 湘潭大学信息工程学院
2. 湖南大学电气与信息工程学院

作者简介:

张东波

通讯作者:

中图分类号:

基金项目:


Feature Selection Neural Network Ensemble Based on Rough Sets Reducts
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    增加集成神经网络中个体网络的差异度有利于提高集成的泛化性能,基于此,提出了Rough_Boosting和Rough_Bagging个体网络生成算法。在Boosting或Bagging算法对样本进行扰动的基础上,通过粗糙集约简实现属性选择,从而有效的将扰动训练样本和扰动输入属性结合起来,生成精确度高且差异度大的个体网络。实验结果表明,本文算法泛化能力明显优于Boosting和Bagging算法,生成的个体网络差异度更大。和同类算法相比,本文算法具有相近或相当的性能。

    Abstract:

    Generalization ability of ensemble networks can be improved if the diversity of the individual network be increased. Consider this point, Rough_Boosting and Rough_Bagging are proposed as new individual network building algorithms. First, the training samples are disturbed by Boosting or Bagging methods, then, based on rough sets theory, proper attributes are selected by finding relative reducts. Thus, the mechanism of disturbing training data and the input attribute are combined to help generate accurate and diverse component networks. Experiment show that the generalization ability of proposed method obviously better than that of Boosting and Bagging methods, and individual networks generated have more diversity than that of Boosting or Bagging. Compared with prevailing similar methods, the proposed method has close or corresponsive performance.

    参考文献
    相似文献
    引证文献
引用本文

张东波 王耀南.基于粗糙集约简的特征选择神经网络集成技术[J].控制与决策,2010,25(3):371-377

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-02-05
  • 最后修改日期:2009-08-04
  • 录用日期:
  • 在线发布日期: 2010-03-20
  • 出版日期:
文章二维码