资源约束网络中基于LSSVM的预测反馈调度
DOI:
CSTR:
作者:
作者单位:

1. 浙江省湖州师范学院信息工程学院
2. 浙江工业大学

作者简介:

李祖欣

通讯作者:

中图分类号:

基金项目:


Least Squares Support Vector Machines Based Predictive Feedback Scheduling for Resource-Constrained networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于网络负载的动态变化,具有资源约束的控制网络总是运行在不可预期的开放环境中。为了保证系统的稳定运行,设计了一个基于最小二乘支持向量机(LSSVM)的反馈调度器。它周期性地监测网络资源,通过LSSVM在线预测出下一周期的可适用网络利用率,根据预测值采用插值法得到控制回路的下一个采样周期,从而实现系统资源的动态分配。对采用固定带宽分配、基于LSSVM以及基于Elman神经网络的反馈调度分别进行了比较。结果表明预测反馈调度策略能使系统在可变负载情况下稳定运行,并在控制质量和网络服务质量之间取得平衡。同时本文提出的算法比Elman神经网络预测算法具有更优的性能,特别是在线训练速度具有较大的优势。

    Abstract:

    Due to the variation of the networks’ workload, control networks with resource constraints usually run in an unpredictable open environment. A feedback scheduler based on least squares support vector machines (LSSVM) is designed in order to guarantee the stability of the system. It periodically monitors the network resources, predicates the available utilization for the next period by using LSSVM technique, and adopts interpolated method to calculate the next sampling period from predicative value. Consequently, the system’s resources are dynamically allocated by this feedback scheduling mechanism. Three different strategies, which are fixed bandwidth allocation, LSSVM based feedback scheduling technique and Elman neural network based feedback scheduling technique, are compared respectively. The results of simulation indicate that the predictive feedback scheduling strategy can guarantee the stability of the system under flexible workload, and prove that the feedback scheduling strategy is an effective tradeoff method between quality of control and quality of service. Simultaneity, the proposed algorithm has better performances than another algorithm based on Elman neural network, especially at online training speed.

    参考文献
    相似文献
    引证文献
引用本文

李祖欣 王万良.资源约束网络中基于LSSVM的预测反馈调度[J].控制与决策,2010,25(3):361-366

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-03-13
  • 最后修改日期:2009-05-02
  • 录用日期:
  • 在线发布日期: 2010-03-20
  • 出版日期:
文章二维码