基于支持向量机的误分类代价敏感模糊推理系统
DOI:
CSTR:
作者:
作者单位:

中国计量学院

作者简介:

郑恩辉

通讯作者:

中图分类号:

基金项目:


Misclassification Cost-sensitive Fuzzy Inference System Based on Support Vector Machines
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当不同样本的误分类具有不同的代价时,支持向量机(SVM)和模糊推理系统(FIS)等以精度为目标的传统分类算法不再适用. 在一定约束条件下,本文提出并证明误分类代价敏感SVM(MC-SVM)和一类基于规则的FIS的函数等效性定理. 在此基础上,提出基于MC-SVM学习过程的FIS(MC-MBFIS)的设计方法. MC-MBFIS继承了基于规则的FIS的显式推理能力,也继承了MC-SVM误分类代价敏感性、良好的泛化能力和对“维数灾难”的避免能力. Benchmark数据试验表明MC-MBFIS能降低平均误分类代价.

    Abstract:

    The conventional classification algorithm generally pursuing more highly accuracy, fuzzy Inference System (FIS) and Support Vector Machines (SVM) included, do not perform well when the misclassification cost of one class samples is unequal to that of another. Under some restrictions, firstly, the functional equivalence between Misclassification Cost-sensitive SVM (MC-SVM) and rule-based FIS is proposed. Secondly, based on the learning mechanism of MC-SVM, the algorithm of designing a rule-based FIS, called Misclassification Cost-sensitive Mercer Binary FIS (MC-MBFIS), is given. The MC-MBFIS algorithm has the good generalization ability, can avoid the “curse of dimension”, and has the transparent inference ability. Experimental results based on a few benchmark data sets show that the MC-MBFIS algorithm reduced average misclassification cost.

    参考文献
    相似文献
    引证文献
引用本文

郑恩辉 陈乐.基于支持向量机的误分类代价敏感模糊推理系统[J].控制与决策,2010,25(2):191-195

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-03-16
  • 最后修改日期:2009-06-24
  • 录用日期:
  • 在线发布日期: 2010-02-20
  • 出版日期:
文章二维码