一种基于主动学习的SVM增量训练算法
DOI:
CSTR:
作者:
作者单位:

陕西空军工程大学导弹学院

作者简介:

徐海龙

通讯作者:

中图分类号:

基金项目:


An incremental training algorithm of SVM Based on the Active learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    支持向量机通过随机选择标记的训练样本进行有监督学习,随着信息容量的增加和数据收集能力的提高,这种从样本学习的被动学习方法需要耗费大量的标记工作量,给实际应用带来不少困难。针对 SVM训练学习过程中难以获得大量带有类标注样本的问题,本文将主动学习策略应用于SVM增量训练中,提出了一种基于距离比值不确定性抽样的主动SVM增量训练算法(DRB-ASVM),实验结果表明在保证不影响分类精度的情况下,应用主动学习策略的SVM选择的标记样本数量大大低于随机选择的标记样本数量,大大降低了标记的工作量或代价,而且训练速度同样有所提高。

    Abstract:

    Support Vector Machines is an effective supervised learning classifier by random selective labeled samples, with increasing information capacity and development of data collection ability, however this passive learning method which learns from samples needs cost much labor to label large-scale samples in actual application. To the problem that large-scale labeled samples isn’t easy to acquire in the course of SVM training, the active learning strategy is used in the SVM training and an incremental training algorithm of active SVM based on the uncertainty based sampling of distance ratio is proposed in the paper. The experimental results show that the active SVM learning strategy can considerably reduce the labeled samples and costs compared to the passive learning method, and at the same time it can ensure the accurate classification performance is kept as the passive SVM and also expedite the SVM training.

    参考文献
    相似文献
    引证文献
引用本文

徐海龙.一种基于主动学习的SVM增量训练算法[J].控制与决策,2010,25(2):282-286

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-03-18
  • 最后修改日期:2009-05-12
  • 录用日期:
  • 在线发布日期: 2010-02-20
  • 出版日期:
文章二维码