基于模糊集合的证据理论信息融合方法
DOI:
CSTR:
作者:
作者单位:

西安工业大学

作者简介:

韩峰

通讯作者:

中图分类号:

TP212.9

基金项目:


Evidence Theory Information Fusion Method Based on Fuzzy Set
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对证据理论应用中,基本概率分配函数(mass函数)不易确定的问题和多传感器信息融合中各传感器测量数据的可靠程度难以确定的问题。本文提出了利用模糊理论中的相关性函数来计算多传感器的相互支持程度,然后由隶属函数得到每个传感器提供信息的可信度,再把各传感器的支持度和可信度转化成基本概率分配函数即mass函数,最后利用证据理论对多传感器信息进行融合。仿真结果表明,该方法获得的结果具有更高的精度和可靠性。

    Abstract:

    Focused on the problem that it is difficult to set up the basic probability assignment function (mass function) in the evidence theory and determine the reliability of each sensor in the process of the multi-sensors data fusion. In the paper, a new data fusion method based on fuzzy theory and evidence theory is proposed. The mutual supportability of multiple sensors is obtained from the correlation function. Then by the membership function, the reliability of information provide by each sensor is gained. Finally, the supposed fusion result can be produced on the basis of evidence theory. The method is simple computationally and can objectively reflect the reliability of each sensor and interrelationship between these sensors. The simulation experiment shows that the fusion results have higher precision and reliability compared with other methods.

    参考文献
    相似文献
    引证文献
引用本文

韩峰.基于模糊集合的证据理论信息融合方法[J].控制与决策,2010,25(3):449-452

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-04-03
  • 最后修改日期:2009-06-26
  • 录用日期:
  • 在线发布日期: 2010-03-20
  • 出版日期:
文章二维码