多目标优化与自适应惩罚的混合约束优化进化算法
DOI:
CSTR:
作者:
作者单位:

中南大学信息科学与工程学院

作者简介:

甘敏

通讯作者:

中图分类号:

基金项目:


Multiobjective Optimization and Adaptive Penalty Function Based Constrained Optimization Evolutionary Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种多目标优化方法和自适应惩罚函数法相结合的进化算法来求解约束优化问题.其主要思想是先利用多目标优化方法提取当前群体中的主要信息,然后进一步用自适应惩罚函数选出最有价值的信息引导群体进化.提出的约束处理技术简单易用,不需要要调节参数.把它与一种基于群的算法生成器模型相结合,就得到了一种新的约束优化进化算法.选取了十个标准测试函数对新算法的性能作了数值实验,结果表明提出的方法非常有效,且有很强的稳健性,和其它尖端算法相比得到了相似或更优的结果.

    Abstract:

    A hybrid evolutionary algorithm based on multiobjective optimization and adaptive penalty function is presented for solving constrained optimization problems. The main idea of this approach is first to take advantage of multiobjective optimization techniques to extract the main information contained in the current population, and then further selcet the most valuable informatin by using the peanlty function to direct the population to evlove. The proposed constraint-handling method is easy to implement and requires no parameter tuning. By integrating it with a model of a population-based algorithm-generator, a novel constrained optimization evolutionary algorithm is derived. Experiments on 10 benchmark test functions verify the effectiveness of the proposed method. The results show that the new approach is very robust and it achieves very competitive performance with respect to some other state-of-the-art approaches.

    参考文献
    相似文献
    引证文献
引用本文

甘敏.多目标优化与自适应惩罚的混合约束优化进化算法[J].控制与决策,2010,25(3):378-382

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-04-20
  • 最后修改日期:2009-05-26
  • 录用日期:
  • 在线发布日期: 2010-03-20
  • 出版日期:
文章二维码