支持向量回归超参数的混沌文化优化选择方法
DOI:
CSTR:
作者:
作者单位:

中国矿业大学信息与电气工程学院

作者简介:

郭一楠

通讯作者:

中图分类号:

基金项目:


The Selection Method for Hyper-parameters of Support Vector Regression by Chaotic Cultural Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    支持向量回归中的超参数选择合理与否,对模型的性能影响很大。常用的梯度下降选择方法要求核函数或估计函数近似值可微,且对迭代初值具有较强依赖性。为此,本文给出一种两阶段参数优化选择方法。第一阶段根据问题实际需求,确定超参数的各自变化区域;第二阶段在确定的参数变化范围内,采用自适应混沌文化算法,寻找具有最优性能的超参数组合。其中,自适应混沌文化算法是利用从进化过程提取的隐含知识来控制自适应混沌变异算子的变异尺度,从而在保证种群多样性的同时,实现进化后期的精细搜索。面向Mackey-Glass时间序列预测的仿真结果表明,该参数选择方法具有较高的求解精度和求解稳定性,能有效抑制早熟收敛;且对函数结构不具有依赖性;所得超参数对应的SVR模型具有较好的泛化性能。

    Abstract:

    The hyper-parameters of support vector regression influence the performance of its model. In the normal gradient descent method, kernel functions or estimation functions must approximately differential. And this method sensitively depends on initial value. Therefore, a novel two-stage optimization selection method for hyper-parameters is proposed. In first stage, the search extent of each hyper-parameter is determined according to the reqirement of issues. In second stage, optimal hyper-parameters are obtained by adaptive chaotic culture algorithm during above search space. Adaptive chaotic cultural algorithm uses implicit knownledge extracted from evolution process to control mutation scale of adaptive chaotic mutaion operator. This strategy can ensure the diversity of population and exploitation in the latter evolution. Taken prediction of Mackey-Glass time series as examples, simulation results indicate that the selection method can effectively avoid the premature convergence and has better computation stability and precision. And it is not related on the stucture of functions. SVR model corresponding to optimal hyper-parameters by this method has better generaliztion.

    参考文献
    相似文献
    引证文献
引用本文

郭一楠.支持向量回归超参数的混沌文化优化选择方法[J].控制与决策,2010,25(4):525-530

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-04-22
  • 最后修改日期:2009-06-14
  • 录用日期:
  • 在线发布日期: 2010-04-20
  • 出版日期:
文章二维码