基于投票信息熵的AdaBoost改进算法
DOI:
CSTR:
作者:
作者单位:

大连海事大学

作者简介:

鲁明羽

通讯作者:

中图分类号:

基金项目:


Improved AdaBoost algorithm based on vote entropy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对AdaBoost算法不能有效提升NB(Naive Bayesian) 的分类性能, 提出一种改进的样本权重维护策略. 权重的调整不仅依据样本是否分错, 还需考虑前几轮的多个基分类器对它的投票分歧. 基分类器的信任度不但与错误率有关, 还与基分类器间的差异性有关. 这样可以提高基分类器的正确性, 增加基分类器的差异性. 实验结果表明, 改进的BoostVE-NB算法能有效地提升NB文本分类性能.

    Abstract:

    For the problem that AdaBoost works poorly with Naive Bayesian (NB) categorization, an improved re-weighting
    rule for training examples is proposed. It is not only considering the classification result of the current iteration, but also
    considering how much those previous classifiers disagree on their decision-making for each training sample. Moreover, the confidence of every base classifier is determined not only by the error rate, but also by the diversity among base classifiers. Thus, the accuracy and instability of the base NB classifiers are increased. Experimental results show that BoostVE-NB is effectively to improve the performance of NB text categorization.

    参考文献
    相似文献
    引证文献
引用本文

唐焕玲 鲁明羽.基于投票信息熵的AdaBoost改进算法[J].控制与决策,2010,25(4):481-492

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-05-08
  • 最后修改日期:2009-07-13
  • 录用日期:
  • 在线发布日期: 2010-04-20
  • 出版日期:
文章二维码