基于两阶段领导的多目标粒子群优化算法
DOI:
CSTR:
作者:
作者单位:

1. 东北大学信息科学与工程学院
2. 东北大学信息学院

作者简介:

胡广浩

通讯作者:

中图分类号:

基金项目:


Multi-objective PSO algorithm based on combining Two Stages-guided and cross-mutation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于两阶段领导与交叉变异相结合的多目标粒子群算法(P-AMOPSO)。算法包含四个改进策略,基于强支配排序与拥挤距离排序相结合的策略构造外部集,可以有效控制粒子的聚合程度;基于两阶段的领导粒子选择策略,既加快了算法的收敛速度,又保证了解的多样性;基于高斯分布及均匀分布相交叉的变异策略,既克服了早熟,又减少了变异的盲目性;基于邻域认知的个体极值更新策略,增大了粒子自我认知的范围,有利于提高粒子摆脱局部极值和局部搜索的能力。通过几个典型的多目标测试函数对P-AMOPSO算法的性能进行了测试,并与多目标优化算法DCMOPSO和MM-MOPSO进行对比.结果表明, P-AMOPSO算法具有良好的搜索性能.

    Abstract:

    This paper introduces a Multi-objective PSO algorithm (P-AMOPSO) based on Two Stages-guided and cross-mutation. There are four improved strategies in this algorithm. First one is to construct external data set based on the strategy of combining strong predominance ranking and crowding distance ranking, which can control congestion of particles effectively. Another one is two Stages-guided strategy, which accelerates the convergence and guarantees the diversity of Pareto optimal set as well. The other one is a cross-mutation operator combining Gaussian distribution mutation and uniform distribution mutation, which overcomes prematurity and reduces side effect of mutation operators. The rest one is to update personal best particle based on the strategy of neighborhood consciousness, which widens self-consciousness range of particles so as to improve its abilities to escape from local optima and conduct local search. Some benchmark functions are tested for comparing the performance of P-AMOPSO with DCMOPSO and MM-MOPSO. The results show the feasibility of P-AMOPSO.

    参考文献
    相似文献
    引证文献
引用本文

胡广浩 毛志忠 何大阔.基于两阶段领导的多目标粒子群优化算法[J].控制与决策,2010,25(3):404-410

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-05-15
  • 最后修改日期:2009-08-26
  • 录用日期:
  • 在线发布日期: 2010-03-20
  • 出版日期:
文章二维码