BP神经网络漏钢预测系统优化
DOI:
CSTR:
作者:
作者单位:

东北大学

作者简介:

厉英

通讯作者:

中图分类号:

基金项目:


Optimization for Breakout Prediction System of BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统逻辑漏钢预测系统稳定性差,收敛速度慢, 收敛精度低等不足,建立具有自组织、自学习等功能的误差反向传播BP神经网络预测模型,采用了变步长、加入了动量项、防振荡项,使网络训练过程中能够跳出局部极小,加快了收敛速度。系统改变以往只将温度数据作为输入参数的传统,将拉速、中间包钢水温度作为考虑因素,扩大了漏钢因素的考虑范围。实验结果表明,采用BP神经网络对某炼钢厂实际数据进行预测,预报结果准确,具有非常好的在线应用前景。

    Abstract:

    In order to overcome the problems of slow speed and low accuracy of convergence and the shortcomings of poor stability of the traditional logical prediction of breakout system. This paper designs a breakout predicting model based on BP neural network which is capable of self-organize and self-learn, and improving the stability and accuracy in breakout prediction. In this paper, we modified the BP algorithm to improve its learning speed such as changing study rate, adding momentum item and avoiding vibration item, so the network can escape from the local minimum while it is training. The drawing speed and temperature of molten steel in tundish are regarded as the influencing factors of breakout in model to extend the range of breakout factors. The experimental results show that the system predicted to get exact results based on practical data from field in a steel plant, so it has good anticipant practical application on line in predicting breakout.

    参考文献
    相似文献
    引证文献
引用本文

厉英. BP神经网络漏钢预测系统优化[J].控制与决策,2010,25(3):453-456

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-05-21
  • 最后修改日期:2009-08-14
  • 录用日期:
  • 在线发布日期: 2010-03-20
  • 出版日期:
文章二维码