哈尔滨工业大学空间控制与惯性技术研究中心 150001
柳明
TN911.72
为减小建模误差,建立了基于直接法进行惯导平台误差模型辨识的非线性模型.Unscented Kalman滤波(UKF)是一种新的非线性滤波算法,为此将其引入惯导平台的误差模型辨识中.针对系统模型的特点,对标准UKF算法进行了简化改进.改进的UKF算法计算量小,结构简单,滤波精度与标准UKF一致.同时应用扩展Kalman滤波(EKF)算法和改进的UKF算法进行了惯导平台误差模型辨识仿真研究.仿真结果表明,与EKF算法相比,改进的UKF算法的滤波精度显著提高.
柳明;刘雨;苏宝库.改进的UKF在惯导平台误差模型辨识中的应用[J].控制与决策,2009,24(1):129-132