浙江大学信息科学与工程学院,杭州310027
沈 希
TP301
针对多目标粒子群优化过程中的粒子飞行偏向性和多样性损失问题,提出一种基于最大最小适应函数的改进算法.该算法在最大最小适应函数的计算中引入了函数相对值算法和ε-支配的概念,并提出了变ε-支配的策略,改进了最大最小适应函数的计算方法,解决了粒子飞行过程中的偏向性和多样性损失问题,加快了算法的收敛速度.将该改进算法应用于直流变频压缩机启动时峰值电流和启动转速的优化问题,应用结果表明该算法收敛速度快且效果良好.
徐 鸣,沈 希,马龙华,等.一种多目标粒子群改进算法的研究[J].控制与决策,2009,24(11):1713-1718