空军工程大学导弹学院,陕西三原713800
张宏达
TP181
针对决策有向无环图支持向量机(DDAGSVM)需训练大量支持向量机(SVM)和误差积累的问题,提出一种线性判别分析(LDA)与SVM 混合的多类分类算法.首先根据高维样本在低维空间中投影的特点,给出一种优化LDA 分类阈值;然后以优化LDA 对每个二类问题的分类误差作为类间线性可分度,对线性可分度较低的问题采用非线性SVM 加以解决,并以分类误差作为对应二类问题的可分度;最后将可分度作为混合DDAG 分类器的决策依据.实验表明,与DDAGSVM 相比,所提出算法在确保泛化精度的条件下具有更高的训练和分类速度.
张宏达,王晓丹,徐海龙.一种LDA与SVM混合的多类分类方法[J].控制与决策,2009,24(11):1723-1728