基于记分函数的直觉随机多准则决策方法
DOI:
CSTR:
作者:
作者单位:

中南大学 商学院

作者简介:

王坚强

通讯作者:

中图分类号:

基金项目:


Intuitionistic random multi-criteria decision-making approach based on score functions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对准则权系数不完全确定, 方案的准则值为区间直觉模糊数的随机多准则决策问题, 提出一种基于记分函数的直觉随机多准则决策方法. 首先定义离散型区间直觉随机变量、记分函数以及记分期望值和记分标准差; 然后构造方案集记分期望值的最优线性规划模型得出最优权向量, 进而求得方案集的联合直觉随机变量分布和综合记分标准期望区间值, 再利用可能度方法确定方案排序; 最后, 算例分析结果表明了该方法的可行性和合理性.

    Abstract:

    For the random multi-criteria decision-making problem, in which the information on criteria’s weights is incomplete and the criteria value of alternatives are in the form of interval intuitionistic fuzzy numbers, an intuitionistic random multi-criteria decision-making approach based on score function is proposed. First, discrete interval intuitionistic random variable, a new score function, the expected score value and score standard deviation of interval intuitionistic random variable are defined。After that, by using the incomplete certain information of criteria weight coefficient, the optimized linear programming model based on the expected score value of alternatives is constructed. The optimal criteria weights can be gained by solving the model, and a distribution of union intuitionistic random variable for each alternative can be figured out. Then, comprehensive score standard expected value for each alternative can be obtained according to the distribution.
    With the adoption of the calculation method of probability degree of interval numbers, the evaluation matrix of the range of comprehensive evaluation for alternatives can be enacted and the order of the alternatives can be listed. Finally, an example shows the feasibility and validity of this approach.

    参考文献
    相似文献
    引证文献
引用本文

王坚强, 李婧婧.基于记分函数的直觉随机多准则决策方法[J].控制与决策,2010,25(9):1297-1301

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-08-05
  • 最后修改日期:2009-12-18
  • 录用日期:
  • 在线发布日期: 2010-09-20
  • 出版日期:
文章二维码