一种多元核Logistic回归说话人辨别方法
DOI:
CSTR:
作者:
作者单位:

浙江工业大学

作者简介:

王震宇

通讯作者:

中图分类号:

TP391.4

基金项目:


Speaker identification based on multi-class kernel Logistic regression model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对文本无关话者辨别多分类目标和大训练样本情况, 将经典Logistic 回归模型进行多元化变形, 并叠加L2 惩罚因子以提高模型泛化能力. 将最优目标负对数Logistic 公式对偶化, 并利用序列最小优化算法进行模型训练, 速率优于传统多元核Logistic 回归训练算法. 实验显示, 该模型构建简单, 训练算法快捷, 且识别率优于经典支持向量机与二元核Logistic 回归模型所生成的“一对一”多分类方法.

    Abstract:

    The traditional Logistic regression model is transformed to multi-class kernel Logistic model applying for text-
    independent speaker identification, which is nonlinear and more than just two classes. The penalty factor is added for enhancing model generalization ability. Then an iterative algorithm is proposed based on the solution of a dual problem by using ideas similar to those of the sequential minimal optimization algorithm for support vector machines. Experiments show that the algorithm is robust and fast, and the recognition rate is as good as widely used methods such as SVM while being used in text-independent speaker identification.

    参考文献
    相似文献
    引证文献
引用本文

郑建炜, 王万良, 王震宇,等.一种多元核Logistic回归说话人辨别方法[J].控制与决策,2010,25(9):1435-1440

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-08-24
  • 最后修改日期:2009-10-14
  • 录用日期:
  • 在线发布日期: 2010-09-20
  • 出版日期:
文章二维码