基于正态分布区间数的信息不完全的群决策方法
DOI:
CSTR:
作者:
作者单位:

湖南工业大学

作者简介:

汪新凡

通讯作者:

中图分类号:

C934

基金项目:


Approach of group decision making based on normal distribution interval number with incomplete information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对属性值为正态分布区间数而属性权重信息不完全的多属性群
    决策问题,定义了一些新的集成算子,即正态分布区间数的加权算术平
    均(NDINWAA)算子、正态分布区间数的有序加权平均(NDINOWA)算子和正态分布区间数的混合加权平
    均(NDINHA)算子,进而提出一种基于正态分布区间数的信息不完全的多属性群决策方法.该方法利用NDINWAA算
    子和NDINHA算子对正态分布区间数属性值进行集成,利用正态分布区间数属性值的方差,通过建立优化模型确定最优
    属性权重,利用期望-方差准则对方案进行排序并择优.实例分析表明了该方法的可行性和有效性.

    Abstract:

    For multiple attribute group
    decision making problems, in which the attribute values are normal
    distribution interval numbers and the attribute weight information
    is incomplete, some new aggregation operators are defined, such as the
    normal distribution interval number weighted arithmetic averaging(NDINWAA) operator, the normal distribution interval number
    ordered weighted averaging(NDINOWA) operator and the normal
    distribution interval number hybrid weighted
    averaging(NDINHA) operator. Then an approach is developed for
    solving multiple attribute group decision making based on normal
    distribution interval number with incomplete information. In this
    method, normal distribution interval number attribute values are
    aggregated by the NDINWAA operator and the NDINHA operator, some
    optimal models are constructed to determine the optimal attribute
    weights by using the variance of normal distribution interval
    number attribute values, and ranking of alternatives is performed by
    using expectation-variance principle. Finally, an example shows
    the effectiveness of this method.

    参考文献
    相似文献
    引证文献
引用本文

汪新凡 肖满生.基于正态分布区间数的信息不完全的群决策方法[J].控制与决策,2010,25(10):1494-1498

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-09-14
  • 最后修改日期:2009-11-08
  • 录用日期:
  • 在线发布日期: 2010-10-20
  • 出版日期:
文章二维码