基于图像纹理特征和多级SVM的浮选过程状态识别方法研究
DOI:
CSTR:
作者:
作者单位:

1.
2. 东北大学信息科学与工程学院

作者简介:

王介生

通讯作者:

中图分类号:

基金项目:


Research on recognizing flotation states based on image texture features and multi-layer SVMs
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对浮选泡沫图像的纹理特征,采用多级支持向量机(MLSVMs)方法对浮选生产过程状
    态进行识别.首先基于灰度共生矩阵,提取浮选泡沫图像的诸如能量、熵及惯性等纹理特
    性参数来描述浮选泡沫的视觉特征;然后采用归一化后的纹理特征数据样本分别对多级
    支持向量机进行训练和识别.MLSVMs模型核函数参数采用改进惯性权重的粒子群算法进
    行优化.测试结果表明,所提出的方法在训练时间和识别正确率上具有较好的性能,可以满足浮选
    过程的实时监控要求.

    Abstract:

    According to the characteristics of the flotation froth
    image texture features, a method for the extraction of significant patterns
    based on multi-layer SVMs(MLSVMs) is introduced. Firstly, the numerical
    flotation froth image is analyzed to extract texture features, such as
    energy, entropy and inertia, based on grey-level co-occurrence matrix(GLCM)
    to provide qualitative information on the changes in the visual appearance
    of the froth. MLSVMs classifier, which is trained with the sampling data
    from above texture features, identifies out the three types of flotation
    production states. The particle swarm optimization(PSO) algorithm with
    improved inertia weights is adopted to optimize kernal function parameters
    of MLSVMs. The test results show that the proposed classifier has an
    excellent performance on training speed and correct recognization ratio, and
    meets the requirement for real-time monitor for the flotation process.

    参考文献
    相似文献
    引证文献
引用本文

王介生 高宪文 张勇.基于图像纹理特征和多级SVM的浮选过程状态识别方法研究[J].控制与决策,2010,25(10):1523-1526

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-09-14
  • 最后修改日期:2009-11-05
  • 录用日期:
  • 在线发布日期: 2010-10-20
  • 出版日期:
文章二维码