拥有领导机制的改进粒子群算法
DOI:
CSTR:
作者:
作者单位:

1.
2. 电子科技大学
3. 电子科技大学自动化工程学院

作者简介:

周龙甫

通讯作者:

中图分类号:

基金项目:

;教育部新世纪人才支持计划(NCET-05-0804)


Improved particle swarm optimization with leadership
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    了提高粒子群算法的全局收敛能力和收敛速度,在以往文献的基
    础上提出一种改进粒子群算法.受生物学研究成果的启发,引入领导机制,将粒子群搜索过程分为领导粒子带领下
    的探索性搜索和所有粒子共同参与的开发性搜索两部分.通过“变异”机制来增强群体多样性,采用5个
    标准函数对算法性能进行分析,应用Bonferroni多重比较法,将改进算法与两种经典算法
    进行基本性能对比.实验结果表明,所提出的改进算法探索速度快,全局搜索能力优.

    Abstract:

    In order to enhance the global convergence ability and the convergence speed of particle swarm optimization (PSO), based on the results of reference, an improved strategy is proposed in this paper. Inspired by the effect of individual experience in animal groups on the move, in the method, the whole searching process is departed into two steps: the exploration search with leadership and the exploitation search. The mutation operator is used to add the diversity of swarm and avoid the convergence of particles to local optimum solutions prematurely. Through analyzed five benchmark functions, the improved method is compared with two famous PSO methods. And, the variance analysis of statistic theory is applied to compare the performance of the three methods. Experimental simulation results confirm that the proposed algorithm can not only significantly speed up the convergence, but also effectively solve the premature convergence problem.

    参考文献
    相似文献
    引证文献
引用本文

周龙甫 师奕兵 张伟.拥有领导机制的改进粒子群算法[J].控制与决策,2010,25(10):1463-1468

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-09-15
  • 最后修改日期:2009-11-18
  • 录用日期:
  • 在线发布日期: 2010-10-20
  • 出版日期:
文章二维码