定向多尺度变异克隆选择优化算法
DOI:
CSTR:
作者:
作者单位:

1. 哈尔滨工程大学
2. 哈尔滨电力职业技术学院

作者简介:

陶新民

通讯作者:

中图分类号:

基金项目:


Clone Selection Optimization Algorithm with Directional Multi-scale Mutation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种定向多尺度变异克隆选择优化算法. 为了实现抗体间信息共享, 算法利用定向进化机制引导抗体向着抗体群最优解区域逼近. 采用多尺度高斯变异机制, 在算法初期利用大尺度振荡变异实现了全局最优解空间的快速定位. 随着适应值的提升, 小尺度变异会随之减低, 使得算法在进化后期通过小尺度变异完成局部精确解的搜索. 将算法应用到5 个经典函数优化问题, 结果表明, 该算法不仅具有更快的收敛速度, 而且全局解搜索能力和稳定性均有显著提高.

    Abstract:

    To deal with the problem of single-scale mutation, premature convergence and slow search speed, a clone selection algorithm(CSA) with directional multi-scale gaussian mutation is proposed. To implement the share of information between antibodies, the directional evolution mechanism is utilized to induce the antibodies to evolve to the best solution region. The special multi-scale Gaussian mutation operators are introduced to make antibodies explore the search space more efficiently. The large-scale mutation operators can be utilized to quickly localize the global optimized space at the early evolution, while the small-scale mutation operators can implement local accurate minima solution search at the late evolution, which can make the algorithm explore the global and local minima thoroughly at the same time. The comparison of the performance of the proposed approach with other CSAs with different mutations is experimented. The experimental results show that
    the proposed method can not only effectively solve the premature convergence problem, but also significantly speed up the convergence and improve the stability.

    参考文献
    相似文献
    引证文献
引用本文

陶新民 刘福荣 刘玉 付丹丹.定向多尺度变异克隆选择优化算法[J].控制与决策,2011,26(2):175-181

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-10-22
  • 最后修改日期:2009-12-10
  • 录用日期:
  • 在线发布日期: 2011-02-20
  • 出版日期:
文章二维码