摘要:适应性粒子群寻优算法Ⅰ(APSO-Ⅰ)是在有序的决策中始终引入随机的,不可预测的决定.为解决APSO-Ⅰ算法收敛深度不够的问题,提出适应性粒子群寻优第Ⅱ代算法(APSO-Ⅱ).APSO-Ⅱ算法是将有序(标准PSO粒子群寻优)和无序(自适应寻优)进行适当的分离,以发挥各自的优势.在自适应寻优阶段,通过在最优粒子邻域空间探寻更优化的解,一但新的优化解被发掘,便利用标准PSO快速寻优.典型复杂函数优化的仿真结果表明,APSO-Ⅱ在收敛速度和收敛深度上均优于DPSO(耗散型PSO),HPSO(自适应层次PSO),AEPSO(自适应逃逸PSO)和APSO-Ⅰ.