大连理工大学电子与信息工程学院 116023
韩敏
TP18
针对模糊规则分类中数据边界硬性划分的局限性问题,建立了云-神经网络模型,并提出了基于云-神经网络的模糊规则分类算法.在不影响数据模糊性和随机性的基础上,将数据转化为规则,并利用神经网络的学习能力,进行多属性模糊规则分类.与传统方法相比,该方法在保证数据模糊性和随机性的基础上,提高了模型精度和分类准确率.应用实例表明了该方法的有效性和可行性.
韩敏;李政.基于云/神经网络的多属性模糊规则分类[J].控制与决策,2009,24(6):933-936