中南大学信息科学与工程学院,长沙410083
甘 敏
TP18
基于全局搜索的进化算法和一种局部搜索算法———结构化的非线性参数优化方法(SNPOM),提出两种混合的优化算法来估计RBF神经网络中的参数:1)初始化一定数目的种群作为SNPOM 的初始值得到其适应值,通过选择、交叉和替换策略来更新种群;2)采用进化算法运行一定的代数,从最终群体中选取一些个体进一步用SNPOM来优化.这两种混合优化算法的本质是用进化算法为SNPOM 搜寻最优初始值,以得到全局最优解.仿真实验结果表明,该混合算法比单独使用进化算法或SNPOM 更优,且优于其他一些算法.
甘 敏,彭晓燕,彭 辉.RBF神经网络参数估计的两种混合优化算法[J].控制与决策,2009,24(8):1172-1176