具有磁场效应的ρ-间隔核学习机
DOI:
CSTR:
作者:
作者单位:

1. 浙江工商职业技术学院
2. 江南大学

作者简介:

陶剑文

通讯作者:

中图分类号:

基金项目:


ρ-margin kernel learning machine with magnetic field effect
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对模式分类问题, 提出一种具有磁场效应的??- 间隔核学习机(??-MKLM), 旨在寻求一个具有磁场效应的
    最优超平面, 受其吸引, 使得一类模式离该平面的距离尽可能的小, 而另一类模式受其排斥, 离该平面的间隔尽可能
    的大, 从而最大可能地实现模式分类. 通过引入一个可调节的磁场强度??, 减小一类模式的数据分布, 从而提升分类
    性能. 分别采用人工数据和实际数据进行实验, 所得结果显示, ??-MKLM在一类和二类模式分类上的性能均优于或等
    同于相关方法.

    Abstract:

    A ??-margin kernel learning machine(??-MKLM) with magnetic field effect is proposed for pattern classification
    problem in this paper. The basic idea is to find a optimal superplane with magnetic field effect such that the distance between
    one class and the hyperplane is as small as possible due to the magnetic attractive effect, while at the same time the margin
    between the hyperplane and the other classes is as large as possible due to magnetic repulsion, thus implementing pattern
    classification as much as possible. Moreover, a magnetic field density ?? is introduecd to compact the data distribution of one
    class, thus improving the classification performance of ??-MKLM even more. Exprimental results obtained with synthetic and
    real data show that the proposed algorithms are effective and competitive to other related diagrams in such cases as two-class
    and one-class pattern classification respectively.

    参考文献
    相似文献
    引证文献
引用本文

陶剑文 王士同.具有磁场效应的ρ-间隔核学习机[J].控制与决策,2011,26(4):623-628

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-01-19
  • 最后修改日期:2010-10-09
  • 录用日期:
  • 在线发布日期: 2011-04-20
  • 出版日期:
文章二维码